Phase-locked loop range

Last updated

The terms hold-in range, pull-in range (acquisition range), and lock-in range are widely used by engineers for the concepts of frequency deviation ranges within which phase-locked loop-based circuits can achieve lock under various additional conditions.

Contents

History

In the classic books on phase-locked loops, [1] [2] published in 1966, such concepts as hold-in, pull-in, lock-in, and other frequency ranges for which PLL can achieve lock, were introduced. They are widely used nowadays (see, e.g. contemporary engineering literature [3] [4] and other publications). Usually in engineering literature only non-strict definitions are given for these concepts. Many years of using definitions based on the above concepts has led to the advice given in a handbook on synchronization and communications, namely to check the definitions carefully before using them. [5] Later some rigorous mathematical definitions were given in. [6] [7]

Gardner problem on the lock-in range definition

In the 1st edition of his well-known work, Phaselock Techniques, Floyd M. Gardner introduced a lock-in concept: [8] If, for some reason, the frequency difference between input and VCO is less than the loop bandwidth, the loop will lock up almost instantaneously without slipping cycles. The maximum frequency difference for which this fast acquisition is possible is called the lock-in frequency. His notion of the lock-in frequency and corresponding definition of the lock-in range have become popular and nowadays are given in various engineering publications. However, since even for zero frequency difference there may exist initial states of loop such that cycle slipping may take place during the acquisition process, the consideration of initial state of the loop is of utmost importance for the cycle slip analysis and, therefore, Gardner’s concept of lock-in frequency lacked rigor and required clarification.

In the 2nd edition of his book, Gardner stated: "there is no natural way to define exactly any unique lock-in frequency", and he wrote that "despite its vague reality, lock-in range is a useful concept". [9] [10]

Definitions

Note that in general , because also depends on initial input of VCO.

Locked state

Definition of locked state

In a locked state: 1) the phase error fluctuations are small, the frequency error is small; 2) PLL approaches the same locked state after small perturbations of the phases and filter state.

Hold-in range

Hold-in range. Free-running frequency of VCO is fixed and input signal frequency is slowly-changing. While o ref is inside hold-in range, VCO frequency is in tune with it, which is called tracking. Outside hold-in range VCO may unlock from input signal. Hold-in-expl2 5.svg
Hold-in range. Free-running frequency of VCO is fixed and input signal frequency is slowly-changing. While ω ref is inside hold-in range, VCO frequency is in tune with it, which is called tracking. Outside hold-in range VCO may unlock from input signal.

Definition of hold-in range.

A largest interval of frequency deviations for which a locked state exists is called a hold-in range, and is called hold-in frequency. [6] [7]

Value of frequency deviation belongs to the hold-in range if the loop re-achieves locked state after small perturbations of the filter's state, the phases and frequencies of VCO and the input signals. This effect is also called steady-state stability. In addition, for a frequency deviation within the hold-in range, after a small changes in input frequency loop re-achieves a new locked state (tracking process).

Pull-in range

Also called acquisition range, capture range. [11]

Assume that the loop power supply is initially switched off and then at the power is switched on, and assume that the initial frequency difference is sufficiently large. The loop may not lock within one beat note, but the VCO frequency will be slowly tuned toward the reference frequency (acquisition process). This effect is also called a transient stability. The pull-in range is used to name such frequency deviations that make the acquisition process possible (see, for example, explanations in Gardner (1966 , p. 40) and Best (2007 , p. 61)).

Definition of pull-in range.

Pull-in range is a largest interval of frequency deviations such that PLL acquires lock for arbitrary initial phase, initial frequency, and filter state. Here is called pull-in frequency. [6] [7] [12]

The difficulties of reliable numerical analysis of the pull-in range may be caused by the presence of hidden attractors in dynamical model of the circuit. [13] [14] [15]

Lock-in range

Assume that PLL is initially locked. Then the reference frequency is suddenly changed in an abrupt manner(step change). Pull-in range guarantees that PLL will eventually synchronize, however this process may take a long time. Such long acquisition process is called cycle slipping.

If difference between initial and final phase deviation is larger than , we say that cycle slipping takes place.

Here, sometimes, the limit of the difference or the maximum of the difference is considered [16]

Definition of lock-in range.

If the loop is in a locked state, then after an abrupt change of free within a lock-in range, the PLL acquires lock without cycle slipping. Here is called lock-in frequency. [6] [7] [17]

Related Research Articles

Phase modulation (PM) is a modulation pattern for conditioning communication signals for transmission. It encodes a message signal as variations in the instantaneous phase of a carrier wave. Phase modulation is one of the two principal forms of angle modulation, together with frequency modulation.

A Costas loop is a phase-locked loop (PLL) based circuit which is used for carrier frequency recovery from suppressed-carrier modulation signals and phase modulation signals. It was invented by John P. Costas at General Electric in the 1950s. Its invention was described as having had "a profound effect on modern digital communications". The primary application of Costas loops is in wireless receivers. Its advantage over other PLL-based detectors is that at small deviations the Costas loop error voltage is as compared to . This translates to double the sensitivity and also makes the Costas loop uniquely suited for tracking Doppler-shifted carriers, especially in OFDM and GPS receivers.

Double-sideband suppressed-carrier transmission (DSB-SC) is transmission in which frequencies produced by amplitude modulation (AM) are symmetrically spaced above and below the carrier frequency and the carrier level is reduced to the lowest practical level, ideally being completely suppressed.

<span class="mw-page-title-main">Phase-locked loop</span> Electronic control system

A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is related to the phase of an input signal. There are several different types; the simplest is an electronic circuit consisting of a variable frequency oscillator and a phase detector in a feedback loop. The oscillator's frequency and phase are controlled proportionally by an applied voltage, hence the term voltage-controlled oscillator (VCO). The oscillator generates a periodic signal of a specific frequency, and the phase detector compares the phase of that signal with the phase of the input periodic signal, to adjust the oscillator to keep the phases matched.

<span class="mw-page-title-main">Bremsstrahlung</span> Electromagnetic radiation due to deceleration of charged particles

In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

Chebyshev filters are analog or digital filters that have a steeper roll-off than Butterworth filters, and have either passband ripple or stopband ripple. Chebyshev filters have the property that they minimize the error between the idealized and the actual filter characteristic over the operating frequency range of the filter, but they achieve this with ripples in the passband. This type of filter is named after Pafnuty Chebyshev because its mathematical characteristics are derived from Chebyshev polynomials. Type I Chebyshev filters are usually referred to as "Chebyshev filters", while type II filters are usually called "inverse Chebyshev filters". Because of the passband ripple inherent in Chebyshev filters, filters with a smoother response in the passband but a more irregular response in the stopband are preferred for certain applications.

<span class="mw-page-title-main">Phase detector</span> Electrical circuit detecting phase difference

A phase detector or phase comparator is a frequency mixer, analog multiplier or logic circuit that generates a signal which represents the difference in phase between two signal inputs.

<span class="mw-page-title-main">Dipole antenna</span> Antenna consisting of two rod shaped conductors

In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the "rabbit ears" television antenna found on broadcast television sets.

In control theory and signal processing, a linear, time-invariant system is said to be minimum-phase if the system and its inverse are causal and stable.

<span class="mw-page-title-main">Voltage-controlled oscillator</span> Oscillator with frequency controlled by a voltage input

A voltage-controlled oscillator (VCO) is an electronic oscillator whose oscillation frequency is controlled by a voltage input. The applied input voltage determines the instantaneous oscillation frequency. Consequently, a VCO can be used for frequency modulation (FM) or phase modulation (PM) by applying a modulating signal to the control input. A VCO is also an integral part of a phase-locked loop. VCOs are used in synthesizers to generate a waveform whose pitch can be adjusted by a voltage determined by a musical keyboard or other input.

<span class="mw-page-title-main">Phasor</span> Complex number representing a particular sine wave

In physics and engineering, a phasor is a complex number representing a sinusoidal function whose amplitude, and initial phase are time-invariant and whose angular frequency is fixed. It is related to a more general concept called analytic representation, which decomposes a sinusoid into the product of a complex constant and a factor depending on time and frequency. The complex constant, which depends on amplitude and phase, is known as a phasor, or complex amplitude, and sinor or even complexor.

<span class="mw-page-title-main">Isotropic radiator</span>

An isotropic radiator is a theoretical point source of electromagnetic or sound waves which radiates the same intensity of radiation in all directions. It has no preferred direction of radiation. It radiates uniformly in all directions over a sphere centred on the source. Isotropic radiators are used as reference radiators with which other sources are compared, for example in determining the gain of antennas. A coherent isotropic radiator of electromagnetic waves is theoretically impossible, but incoherent radiators can be built. An isotropic sound radiator is possible because sound is a longitudinal wave.

Floyd M. Gardner was a well-known expert and author in the area of phase lock loops (PLLs). The first, second, and third editions of his book Phaselock Techniques have been highly influential and remain a well-recognized reference among electrical engineers specializing in areas involving PLLs. In 1980, Gardner was elected IEEE Fellow "for contributions to the understanding and applications of phase lock loops."

A phase detector characteristic is a function of phase difference describing the output of the phase detector.

In rotordynamics, order tracking is a family of signal processing tools aimed at transforming a measured signal from time domain to angular domain. These techniques are applied to asynchronously sampled signals to obtain the same signal sampled at constant angular increments of a reference shaft. In some cases the outcome of the Order Tracking is directly the Fourier transform of such angular domain signal, whose frequency counterpart is defined as "order". Each order represents a fraction of the angular velocity of the reference shaft.

The spectrum of a chirp pulse describes its characteristics in terms of its frequency components. This frequency-domain representation is an alternative to the more familiar time-domain waveform, and the two versions are mathematically related by the Fourier transform. The spectrum is of particular interest when pulses are subject to signal processing. For example, when a chirp pulse is compressed by its matched filter, the resulting waveform contains not only a main narrow pulse but, also, a variety of unwanted artifacts many of which are directly attributable to features in the chirp's spectral characteristics.

<span class="mw-page-title-main">Averaged Lagrangian</span>

In continuum mechanics, Whitham's averaged Lagrangian method – or in short Whitham's method – is used to study the Lagrangian dynamics of slowly-varying wave trains in an inhomogeneous (moving) medium. The method is applicable to both linear and non-linear systems. As a direct consequence of the averaging used in the method, wave action is a conserved property of the wave motion. In contrast, the wave energy is not necessarily conserved, due to the exchange of energy with the mean motion. However the total energy, the sum of the energies in the wave motion and the mean motion, will be conserved for a time-invariant Lagrangian. Further, the averaged Lagrangian has a strong relation to the dispersion relation of the system.

Adiabatic radio frequency (RF) pulses are used in magnetic resonance imaging (MRI) to achieve excitation that is insensitive to spatial inhomogeneities in the excitation field or off-resonances in the sampled object.

<span class="mw-page-title-main">Charge-pump phase-locked loop</span>

Charge-pump phase-locked loop (CP-PLL) is a modification of phase-locked loops with phase-frequency detector and square waveform signals. CP-PLL allows for a quick lock of the phase of the incoming signal, achieving low steady state phase error.

William F. Egan was well-known expert and author in the area of PLLs. The first and second editions of his book Frequency Synthesis by Phase Lock as well as his book Phase-Lock Basics are references among electrical engineers specializing in areas involving PLLs.

References

  1. Gardner, Floyd (1966). Phase-lock techniques. New York: John Wiley & Sons.
  2. Viterbi, A. (1966). Principles of coherent communications. New York: McGraw-Hill.
  3. Gardner, Floyd (2005). Phase-lock techniques (3rd ed.). Wiley.
  4. Best, Roland (2007). Phase-Lock Loops: Design, Simulation and Application (6th ed.). McGraw-Hill.
  5. Kihara, M.; Ono, S.; Eskelinen, P. (2002). Digital Clocks for Synchronization and Communications. Artech House. p. 49.
  6. 1 2 3 4 Leonov, G. A.; Kuznetsov, N. V.; Yuldashev, M. V.; Yuldashev, R. V. (2015). "Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous mathematical definitions and limitations of classical theory". IEEE Transactions on Circuits and Systems I: Regular Papers. IEEE. 62 (10): 2454–2464. arXiv: 1505.04262 . doi:10.1109/TCSI.2015.2476295. S2CID   12292968.
  7. 1 2 3 4 Kuznetsov, N. V.; Leonov, G. A.; Yuldashev, M. V.; Yuldashev, R. V. (2015). "Rigorous mathematical definitions of the hold-in and pull-in ranges for phase-locked loops". IFAC-PapersOnLine. 48 (11): 710–713. doi: 10.1016/j.ifacol.2015.09.272 .
  8. Gardner 1966 , p. 40
  9. Gardner, Floyd (1979). Phase-lock techniques (2nd ed.). New York: John Wiley & Sons. p. 70.
  10. see also Gardner 2005 , pp. 187–188
  11. Razavi, B. (1996). Design of Monolithic Phase-Locked Loops and Clock Recovery Circuits-A Tutorial. IEEE Press.
  12. Kuznetsov, N.V.; Lobachev, M.Y.; Yuldashev, M.V.; Yuldashev, R.V. (2021). "The Egan problem on the pull-in range of type 2 PLLs". IEEE Transactions on Circuits and Systems II: Express Briefs. 68 (4): 1467–1471. doi: 10.1109/TCSII.2020.3038075 .
  13. Kuznetsov, N.V.; Leonov, G.A.; Yuldashev, M.V.; Yuldashev, R.V. (2017). "Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE". Communications in Nonlinear Science and Numerical Simulation. 51: 39–49. Bibcode:2017CNSNS..51...39K. doi:10.1016/j.cnsns.2017.03.010.
  14. Best, R.; Kuznetsov, N.V.; Leonov, G.A.; Yuldashev, M.V.; Yuldashev, R.V. (2016). "Tutorial on dynamic analysis of the Costas loop". IFAC Annual Reviews in Control. 42: 27–49. arXiv: 1511.04435 . doi:10.1016/j.arcontrol.2016.08.003. S2CID   10703739.
  15. Kuznetsov, N.V.; Lobachev, M.V.; Yuldashev, M.V.; Yuldashev, R.V. (2019). "On the Gardner problem for phase-locked loops". Doklady Mathematics. 100 (3): 568–570. doi:10.1134/S1064562419060218. S2CID   240570100.
  16. Stensby, J. (1997). Phase-Locked Loops: Theory and Applications. Taylor & Francis.
  17. Kuznetsov, N.V.; Lobachev, M.Y.; Yuldashev, M.V.; Yuldashev, R.V.; Tavazoei, M.S. (2023). "The Gardner problem on the lock-in range of second-order type 2 phase-locked loops". IEEE Transactions on Automatic Control: 1–15. doi: 10.1109/TAC.2023.3277896 .