Photoferroelectric imaging

Last updated

Photoferroelectric imaging is the process of storing an image onto a piece of ferroelectric material by the aid of an applied electric pulse. Stored images are nonvolatile and selectively erasable. [1] Photoferroelectric image storage devices have the advantage of being "extremely simple and easy to fabricate". [2]

Contents

Photoferroelectric imaging uses a ferroelectric material's photosensitivity in conjunction with its ferroelectric properties. One type of medium which has been used for photoferroelectric imaging is lead lanthanum zirconate titanate (PLZT) ceramics, [1] which exhibit a good combination of properties for imaging: large electro-optic coefficients, high intrinsic and extrinsic photosensitivities, and nonvolatile memory. [3]

Process

A description of a photoferroelectric imaging process (using PLZT material) is given in the McGraw-Hill Concise Encyclopedia of Science and Technology. In that process, a thin flat plate of transparent, optically polished PLZT material (around 0.25mm thick) was sputter-coated with indium tin oxide (ITO) on both sides, serving as electrodes. Then, the image was exposed onto one of the ITO surfaces, while a voltage pulse was simultaneously applied across the electrodes. The ferroelectric polarization thereby switched from one remanent state to another, and images were "stored both as spatial distributions of light-scattering centers in the bulk of the PLZT and as surface deformation strains which form a relief pattern of the image on the exposed surface." [1] The image may then be viewed directly or indirectly. [1]

This photoferroelectric effect is a type of electro-optic effect. In the example process, the ceramic was poled [lower-alpha 1] to a saturation remanent polarization state by the light (charge carriers were photoexcited across the PLZT's bandgap). The polarization was then switched by the application of the electric field - a phenomenon called photoassisted domain switching. [4]

Applications

Photoferroelectric imaging may be useful in temporary image storage and display. [1] It also has potential applications in data storage [5] [4] and holographic recording. [4]

Related Research Articles

Ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoelectric and pyroelectric, with the additional property that their natural electrical polarization is reversible. The term is used in analogy to ferromagnetism, in which a material exhibits a permanent magnetic moment. Ferromagnetism was already known when ferroelectricity was discovered in 1920 in Rochelle salt by Joseph Valasek. Thus, the prefix ferro, meaning iron, was used to describe the property despite the fact that most ferroelectric materials do not contain iron. Materials that are both ferroelectric and ferromagnetic are known as multiferroics.

<span class="mw-page-title-main">Pyroelectricity</span> Voltage created when a crystal is heated

Pyroelectricity is a property of certain crystals which are naturally electrically polarized and as a result contain large electric fields. Pyroelectricity can be described as the ability of certain materials to generate a temporary voltage when they are heated or cooled. The change in temperature modifies the positions of the atoms slightly within the crystal structure, so that the polarization of the material changes. This polarization change gives rise to a voltage across the crystal. If the temperature stays constant at its new value, the pyroelectric voltage gradually disappears due to leakage current. The leakage can be due to electrons moving through the crystal, ions moving through the air, or current leaking through a voltmeter attached across the crystal.

Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Polyvinylidene fluoride</span> Non-reactive thermoplastic fluoropolymer

Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) is a highly non-reactive thermoplastic fluoropolymer produced by the polymerization of vinylidene difluoride. Its chemical formula is (C2H2F2)n.

<span class="mw-page-title-main">Pockels effect</span> Linear change in the refractive index of optical media due to an electric field

In optics, the Pockels effect, or Pockels electro-optic effect, is a directionally-dependent linear variation in the refractive index of an optical medium that occurs in response to the application of an electric field. It is named after the German physicist Friedrich Carl Alwin Pockels, who studied the effect in 1893. The non-linear counterpart, the Kerr effect, causes changes in the refractive index at a rate proportional to the square of the applied electric field. In optical media, the Pockels effect causes changes in birefringence that vary in proportion to the strength of the applied electric field.

Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data.

<span class="mw-page-title-main">Lead zirconate titanate</span> Chemical compound

Lead zirconate titanate, also called lead zirconium titanate and commonly abbreviated as PZT, is an inorganic compound with the chemical formula Pb[ZrxTi1−x]O3(0 ≤ x ≤ 1). It is a ceramic perovskite material that shows a marked piezoelectric effect, meaning that the compound changes shape when an electric field is applied. It is used in a number of practical applications such as ultrasonic transducers and piezoelectric resonators. It is a white to off-white solid.

In electromagnetism, electrostriction is a property of all electrical non-conductors, or dielectrics, that causes them to change their shape under the application of an electric field. It is the dual property to magnetostriction.

<span class="mw-page-title-main">Ferroelectric RAM</span> Novel type of computer memory

Ferroelectric RAM is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is one of a growing number of alternative non-volatile random-access memory technologies that offer the same functionality as flash memory. An FeRAM chip contains a thin film of ferroelectric material, often lead zirconate titanate, commonly referred to as PZT. The atoms in the PZT layer change polarity in an electric field, thereby producing a power-efficient binary switch. However, the most important aspect of the PZT is that it is not affected by power disruption or magnetic interference, making FeRAM a reliable nonvolatile memory.

<span class="mw-page-title-main">Barium titanate</span> Chemical compound

Barium titanate (BTO) is an inorganic compound with chemical formula BaTiO3. Barium titanate appears white as a powder and is transparent when prepared as large crystals. It is a ferroelectric, pyroelectric, and piezoelectric ceramic material that exhibits the photorefractive effect. It is used in capacitors, electromechanical transducers and nonlinear optics.

An optical modulator is a device which is used to modulate a beam of light. The beam may be carried over free space, or propagated through an optical waveguide. Depending on the parameter of a light beam which is manipulated, modulators may be categorized into amplitude modulators, phase modulators, polarization modulators etc. Often the easiest way to obtain modulation of intensity of a light beam, is to modulate the current driving the light source, e.g. a laser diode. This sort of modulation is called direct modulation, as opposed to the external modulation performed by a light modulator. For this reason light modulators are, e.g. in fiber optic communications, called external light modulators.

In physics, photon-induced electric field poling is a phenomenon whereby a pattern of local electric field orientations can be encoded in a suitable ferroelectric material, such as perovskite. The resulting encoded material is conceptually similar to the pattern of magnetic field orientations within the magnetic domains of a ferromagnet, and thus may be considered as a possible technology for computer storage media. The encoded regions are optically active and thus may be "read out" optically.

<span class="mw-page-title-main">Ceramic capacitor</span> Fixed-value capacitor using ceramic

A ceramic capacitor is a fixed-value capacitor where the ceramic material acts as the dielectric. It is constructed of two or more alternating layers of ceramic and a metal layer acting as the electrodes. The composition of the ceramic material defines the electrical behavior and therefore applications. Ceramic capacitors are divided into two application classes:

A fiber-optic sensor is a sensor that uses optical fiber either as the sensing element, or as a means of relaying signals from a remote sensor to the electronics that process the signals. Fibers have many uses in remote sensing. Depending on the application, fiber may be used because of its small size, or because no electrical power is needed at the remote location, or because many sensors can be multiplexed along the length of a fiber by using light wavelength shift for each sensor, or by sensing the time delay as light passes along the fiber through each sensor. Time delay can be determined using a device such as an optical time-domain reflectometer and wavelength shift can be calculated using an instrument implementing optical frequency domain reflectometry.

An optical modulator is an optical device which is used to modulate a beam of light with a perturbation device. It is a kind of transmitter to convert information to optical binary signal through optical fiber or transmission medium of optical frequency in fiber optic communication. There are several methods to manipulate this device depending on the parameter of a light beam like amplitude modulator (majority), phase modulator, polarization modulator etc. The easiest way to obtain modulation is modulation of intensity of a light by the current driving the light source. This sort of modulation is called direct modulation, as opposed to the external modulation performed by a light modulator. For this reason, light modulators are called external light modulators. According to manipulation of the properties of material modulators are divided into two groups, absorptive modulators and refractive modulators. Absorption coefficient can be manipulated by Franz-Keldysh effect, Quantum-Confined Stark Effect, excitonic absorption, or changes of free carrier concentration. Usually, if several such effects appear together, the modulator is called electro-absorptive modulator. Refractive modulators most often make use of electro-optic effect, other modulators are made with acousto-optic effect, magneto-optic effect such as Faraday and Cotton-Mouton effects. The other case of modulators is spatial light modulator (SLM) which is modified two dimensional distribution of amplitude & phase of an optical wave.

<span class="mw-page-title-main">Ferroelectric polymer</span> Group of crystalline polar polymers that are also ferroelectric

Ferroelectric polymers are a group of crystalline polar polymers that are also ferroelectric, meaning that they maintain a permanent electric polarization that can be reversed, or switched, in an external electric field.

<span class="mw-page-title-main">Chiral media</span> Applied to electromagnetism

The term chiral describes an object, especially a molecule, which has or produces a non-superposable mirror image of itself. In chemistry, such a molecule is called an enantiomer or is said to exhibit chirality or enantiomerism. The term "chiral" comes from the Greek word for the human hand, which itself exhibits such non-superimposeability of the left hand precisely over the right. Due to the opposition of the fingers and thumbs, no matter how the two hands are oriented, it is impossible for both hands to exactly coincide. Helices, chiral characteristics (properties), chiral media, order, and symmetry all relate to the concept of left- and right-handedness.

<span class="mw-page-title-main">Kenji Uchino</span> American electronics engineer

Kenji Uchino is an American electronics engineer, physicist, academic, inventor and industry executive. He is currently a professor of Electrical Engineering at Pennsylvania State University, where he also directs the International Center for Actuators and Transducers at Materials Research Institute. He is the former associate director at The US Office of Naval Research – Global Tokyo Office.

<span class="mw-page-title-main">Solaristor</span> Self-powered phototransistor

A solaristor is a compact two-terminal self-powered phototransistor. The two-in-one transistor plus solar cell achieves the high-low current modulation by a memresistive effect in the flow of photogenerated carriers. The term was coined by Dr Amador Perez-Tomas working in collaboration with other ICN2 researchers in 2018 when they demonstrated the concept in a ferroelectric-oxide/organic bulk heterojunction solar cell.

References

  1. 1 2 3 4 5 Land, Cecil (2004). "Photoferroelectric imaging". McGraw-Hill Concise Encyclopedia of Science and Technology (5 ed.). New York: McGraw-Hill.
  2. Cecil E. Land (8 April 1981). Photoferroelectric Image Storage in PLZT Ceramics (PDF) (Report). Sandia National Labs. p. 1. Retrieved 4 April 2024. PFE image storage devices are extremely sinple and easy to fabricate.
  3. D. Dimos and R. W. Schwartz (24 October 1991). "Electrooptic Properties of PZT Thin Films for Image Storage Applications". Mat. Res. Soc. Symp. Proc. Vol. 243. Materials Research Society. p. 73. doi:10.1557/PROC-243-73. Transparent ferroelectric ceramics based on PLZT solid solutions, have been shown to exhibit a combination of properties, such as large electrooptic coefficients, high (intrinsic and extrinsic) photosensitivities, and nonvolatile memory, that make them suitable for optical information storage and processing applications.
  4. 1 2 3 Haertling, Gene H. (17 July 1986). "PLZT electrooptic materials and applications—a review 🔍". Ferroelectrics. 75 (1): 41, 43. doi:10.1080/00150198708008208 . Retrieved 7 April 2024.
  5. ICMAB-Institute de Sciencia de Materials de Barcelona (20 January 2021). "Storing information with light". Phys.org. Retrieved 1 April 2024.

Notes

  1. Poling means to align dipoles within a material.

See also