Photometric parallax

Last updated

Photometric parallax is a means to infer the distances of stars using their colours and apparent brightnesses. It was used by the Sloan Digital Sky Survey to discover the Virgo super star cluster.

Assuming that a star is on the main sequence, the star's absolute magnitude can be determined based on its color. Once the absolute and apparent magnitudes are known, the distance to the star can be determined by using the distance modulus. It does not actually employ any measurements of parallax and can be considered a misnomer.

Unlike the stellar parallax method, the photometric parallax method can be used to estimate the distances of stars over 10 kpc away, at the expense of much more limited accuracy for individual measurements.

See also

Related Research Articles

<span class="mw-page-title-main">Astrometry</span> Branch of astronomy involving positioning and movements of celestial bodies

Astrometry is a branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. It provides the kinematics and physical origin of the Solar System and this galaxy, the Milky Way.

<span class="mw-page-title-main">Apparent magnitude</span> Brightness of a celestial object observed from the Earth

Apparent magnitude is a measure of the brightness of a star, astronomical object or other celestial objects like artificial satellites. Its value depends on its intrinsic luminosity, its distance, and any extinction of the object's light caused by interstellar dust along the line of sight to the observer.

<span class="mw-page-title-main">Parallax</span> Difference in the apparent position of an object viewed along two different lines of sight

Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or half-angle of inclination between those two lines. Due to foreshortening, nearby objects show a larger parallax than farther objects, so parallax can be used to determine distances.

<span class="mw-page-title-main">Parsec</span> Unit of length in astronomy

The parsec is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to 3.26 light-years or 206,265 astronomical units (AU), i.e. 30.9 trillion kilometres. The parsec unit is obtained by the use of parallax and trigonometry, and is defined as the distance at which 1 AU subtends an angle of one arcsecond. The nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun: from that distance, the gap between the Earth and the Sun spans slightly less than one arcsecond. Most stars visible to the naked eye are within a few hundred parsecs of the Sun, with the most distant at a few thousand parsecs, and the Andromeda Galaxy at over 700,000 parsecs.

<span class="mw-page-title-main">Luminosity</span> Measurement of radiant electromagnetic power emitted by an object

Luminosity is an absolute measure of radiated electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical objects.

<span class="mw-page-title-main">Proper motion</span> Measure of observed changes in the apparent locations of stars

Proper motion is the astrometric measure of the observed changes in the apparent places of stars or other celestial objects in the sky, as seen from the center of mass of the Solar System, compared to the abstract background of the more distant stars.

<span class="mw-page-title-main">Andromeda Galaxy</span> Barred spiral galaxy in the Local Group

The Andromeda Galaxy is a barred spiral galaxy and is the nearest major galaxy to the Milky Way. It was originally named the Andromeda Nebula and is cataloged as Messier 31, M31, and NGC 224. Andromeda has a D25 isophotal diameter of about 46.56 kiloparsecs (152,000 light-years) and is approximately 765 kpc (2.5 million light-years) from Earth. The galaxy's name stems from the area of Earth's sky in which it appears, the constellation of Andromeda, which itself is named after the princess who was the wife of Perseus in Greek mythology.

<span class="mw-page-title-main">Photometry (astronomy)</span> Determination of light intensities of astronomical bodies

In astronomy, photometry, from Greek photo- ("light") and -metry ("measure"), is a technique used in astronomy that is concerned with measuring the flux or intensity of light radiated by astronomical objects. This light is measured through a telescope using a photometer, often made using electronic devices such as a CCD photometer or a photoelectric photometer that converts light into an electric current by the photoelectric effect. When calibrated against standard stars of known intensity and colour, photometers can measure the brightness or apparent magnitude of celestial objects.

<i>Hipparcos</i> European Space Agency scientific satellite

Hipparcos was a scientific satellite of the European Space Agency (ESA), launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions and distances of celestial objects on the sky. This permitted the first high-precision measurements of the intrinsic brightnesses, proper motions, and parallaxes of stars, enabling better calculations of their distance and tangential velocity. When combined with radial velocity measurements from spectroscopy, astrophysicists were able to finally measure all six quantities needed to determine the motion of stars. The resulting Hipparcos Catalogue, a high-precision catalogue of more than 118,200 stars, was published in 1997. The lower-precision Tycho Catalogue of more than a million stars was published at the same time, while the enhanced Tycho-2 Catalogue of 2.5 million stars was published in 2000. Hipparcos' follow-up mission, Gaia, was launched in 2013.

<span class="mw-page-title-main">RR Lyrae variable</span> Type of variable star

RR Lyrae variables are periodic variable stars, commonly found in globular clusters. They are used as standard candles to measure (extra) galactic distances, assisting with the cosmic distance ladder. This class is named after the prototype and brightest example, RR Lyrae.

<span class="mw-page-title-main">Cosmic distance ladder</span> Succession of methods by which astronomers determine the distances to celestial objects

The cosmic distance ladder is the succession of methods by which astronomers determine the distances to celestial objects. A direct distance measurement of an astronomical object is possible only for those objects that are "close enough" to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known luminosity.

<i>Gaia</i> (spacecraft) European optical space observatory for astrometry

Gaia is a space observatory of the European Space Agency (ESA) that was launched in 2013 and is planned to operate until March 2025. The spacecraft is designed for astrometry: measuring the positions, distances and motions of stars with unprecedented precision, and the positions of exoplanets by measuring attributes about the stars they orbit such as their apparent magnitude and color. The mission aims to construct by far the largest and most precise 3D space catalog ever made, totalling approximately 1 billion astronomical objects, mainly stars, but also planets, comets, asteroids and quasars, among others.

<span class="mw-page-title-main">Brocchi's Cluster</span> Asterism of 10 stars in the constellation Vulpecula

Brocchi's Cluster is a asterism of 10 stars. Six of the stars appear in an row, across 1.3° of the night sky. The cluster is in the south of the constellation Vulpecula, near the border with Sagitta. Its nickname is the Coathanger. None of these ten stars are believed to be gravitationally bound to each other, thus they are not a star cluster, a fact established by measurements taken by the Hipparcos satellite in 1997. An additional 30 or so much fainter stars are considered by some to be part of the asterism.

The Malmquist bias is an effect in observational astronomy which leads to the preferential detection of intrinsically bright objects. It was first described in 1922 by Swedish astronomer Gunnar Malmquist (1893–1982), who then greatly elaborated upon this work in 1925. In statistics, this bias is referred to as a selection bias or data censoring. It affects the results in a brightness-limited survey, where stars below a certain apparent brightness cannot be included. Since observed stars and galaxies appear dimmer when farther away, the brightness that is measured will fall off with distance until their brightness falls below the observational threshold. Objects which are more luminous, or intrinsically brighter, can be observed at a greater distance, creating a false trend of increasing intrinsic brightness, and other related quantities, with distance. This effect has led to many spurious claims in the field of astronomy. Properly correcting for these effects has become an area of great focus.

<span class="mw-page-title-main">Magnitude (astronomy)</span> Logarithmic measure of the brightness of an astronomical object

In astronomy, magnitude is a measure of the brightness of an object, usually in a defined passband. An imprecise but systematic determination of the magnitude of objects was introduced in ancient times by Hipparchus.

Photographic magnitude is a measure of the relative brightness of a star or other astronomical object as imaged on a photographic film emulsion with a camera attached to a telescope. An object's apparent photographic magnitude depends on its intrinsic luminosity, its distance and any extinction of light by interstellar matter existing along the line of sight to the observer.

In astronomy, the distance to a visual binary star may be estimated from the masses of its two components, the angular size of their orbit, and the period of their orbit about one another. A dynamical parallax is an (annual) parallax which is computed from such an estimated distance.

Spectroscopic parallax or main sequence fitting is an astronomical method for measuring the distances to stars.

Iota<sup>2</sup> Normae Star in the constellation Norma

ι2 Normae, Latinised as Iota2 Normae, is a single, blue-white star located in the southern constellation of Norma. It is positioned to the west of Rigil Kentaurus but can be difficult to spot against the Milky Way. It is faintly visible to the naked eye with an apparent visual magnitude of +5.57. Measuring its parallax reveals it is located 280±10 light-years away from the sun. At that distance, the visual magnitude is diminished by an interstellar extinction factor of 0.24 due to intervening dust. The radial velocity of this star is zero, indicating it is neither moving toward nor away from the Sun.

<span class="mw-page-title-main">Parallax in astronomy</span> Change in the apparent position of celestial bodies when seen from two different positions

The most important fundamental distance measurements in astronomy come from trigonometric parallax, as applied in the stellar parallax method. As the Earth orbits the Sun, the position of a nearby star will appear to shift slightly against the more distant background. This shift is the apex angle in an isosceles triangle, with 2 AU making the base leg of the triangle and the distance to the star being the long equal-length legs. The amount of shift is quite small, even for the nearest stars, measuring 1 arcsecond for an object at 1 parsec's distance, and thereafter decreasing in angular amount as the distance increases. Astronomers usually express distances in units of parsecs ; light-years are used in popular media.

References