Physiological Society Annual Review Prize Lecture

Last updated
Annual Review Prize Lecture
Sponsored by The Physiological Society
Location London
Presented by The Physiological Society   OOjs UI icon edit-ltr-progressive.svg
Website www.physoc.org/supporting-you/prize-lectures/annual-review-prize-lecture/

The Physiology Society Annual Review Prize Lecture is an award conferred by The Physiological Society. First awarded in 1968, it is one of the premier awards of the society. [1]

Contents

Recipients

Recipients of the prize, and their lectures, have included: [2] [3]

See also

Related Research Articles

<span class="mw-page-title-main">Chemical synapse</span> Biological junctions through which neurons signals can be sent

Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body.

The muscular system is an organ system consisting of skeletal, smooth, and cardiac muscle. It permits movement of the body, maintains posture, and circulates blood throughout the body. The muscular systems in vertebrates are controlled through the nervous system although some muscles can be completely autonomous. Together with the skeletal system in the human, it forms the musculoskeletal system, which is responsible for the movement of the body.

<span class="mw-page-title-main">Long-term potentiation</span> Persistent strengthening of synapses based on recent patterns of activity

In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons. The opposite of LTP is long-term depression, which produces a long-lasting decrease in synaptic strength.

In neurophysiology, long-term depression (LTD) is an activity-dependent reduction in the efficacy of neuronal synapses lasting hours or longer following a long patterned stimulus. LTD occurs in many areas of the CNS with varying mechanisms depending upon brain region and developmental progress.

<span class="mw-page-title-main">Muscle contraction</span> Activation of tension-generating sites in muscle

Muscle contraction is the activation of tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding something heavy in the same position. The termination of muscle contraction is followed by muscle relaxation, which is a return of the muscle fibers to their low tension-generating state.

<span class="mw-page-title-main">Rodolfo Llinás</span> Colombian neuroscientist (born 1934)

Rodolfo Llinás Riascos is a Colombian and American neuroscientist. He is currently the Thomas and Suzanne Murphy Professor of Neuroscience and Chairman Emeritus of the Department of Physiology & Neuroscience at the NYU School of Medicine. Llinás has published over 800 scientific articles.

Voltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium channels (VDCCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the calcium ion Ca2+. These channels are slightly permeable to sodium ions, so they are also called Ca2+-Na+ channels, but their permeability to calcium is about 1000-fold greater than to sodium under normal physiological conditions.

<span class="mw-page-title-main">Jean-Pierre Changeux</span> French neuroscientist

Jean-Pierre Changeux is a French neuroscientist known for his research in several fields of biology, from the structure and function of proteins, to the early development of the nervous system up to cognitive functions. Although being famous in biological sciences for the MWC model, the identification and purification of the nicotinic acetylcholine receptor and the theory of epigenesis by synapse selection are also notable scientific achievements. Changeux is known by the non-scientific public for his ideas regarding the connection between mind and physical brain. As put forth in his book, Conversations on Mind, Matter and Mathematics, Changeux strongly supports the view that the nervous system functions in a projective rather than reactive style and that interaction with the environment, rather than being instructive, results in the selection amongst a diversity of preexisting internal representations.

Molecular neuroscience is a branch of neuroscience that observes concepts in molecular biology applied to the nervous systems of animals. The scope of this subject covers topics such as molecular neuroanatomy, mechanisms of molecular signaling in the nervous system, the effects of genetics and epigenetics on neuronal development, and the molecular basis for neuroplasticity and neurodegenerative diseases. As with molecular biology, molecular neuroscience is a relatively new field that is considerably dynamic.

<span class="mw-page-title-main">Calcium signaling</span> Intracellular communication process

Calcium signaling is the use of calcium ions (Ca2+) to communicate and drive intracellular processes often as a step in signal transduction. Ca2+ is important for cellular signalling, for once it enters the cytosol of the cytoplasm it exerts allosteric regulatory effects on many enzymes and proteins. Ca2+ can act in signal transduction resulting from activation of ion channels or as a second messenger caused by indirect signal transduction pathways such as G protein-coupled receptors.

<span class="mw-page-title-main">The Physiological Society</span> Learned society for physiologists in the United Kingdom

The Physiological Society, founded in 1876, is a learned society for physiologists in the United Kingdom.

<span class="mw-page-title-main">Calcium ATPase</span> Class of enzymes

Ca2+ ATPase is a form of P-ATPase that transfers calcium after a muscle has contracted. The two kinds of calcium ATPase are:

<span class="mw-page-title-main">Roger Y. Tsien</span> American biochemist and Nobel laureate (1952–2016)

Roger Yonchien Tsien was an American biochemist. He was a professor of chemistry and biochemistry at the University of California, San Diego and was awarded the Nobel Prize in Chemistry for his discovery and development of the green fluorescent protein, in collaboration with organic chemist Osamu Shimomura and neurobiologist Martin Chalfie. Tsien was also a pioneer of calcium imaging.

<span class="mw-page-title-main">Dendritic spike</span> Action potential generated in the dendrite of a neuron

In neurophysiology, a dendritic spike refers to an action potential generated in the dendrite of a neuron. Dendrites are branched extensions of a neuron. They receive electrical signals emitted from projecting neurons and transfer these signals to the cell body, or soma. Dendritic signaling has traditionally been viewed as a passive mode of electrical signaling. Unlike its axon counterpart which can generate signals through action potentials, dendrites were believed to only have the ability to propagate electrical signals by physical means: changes in conductance, length, cross sectional area, etc. However, the existence of dendritic spikes was proposed and demonstrated by W. Alden Spencer, Eric Kandel, Rodolfo Llinás and coworkers in the 1960s and a large body of evidence now makes it clear that dendrites are active neuronal structures. Dendrites contain voltage-gated ion channels giving them the ability to generate action potentials. Dendritic spikes have been recorded in numerous types of neurons in the brain and are thought to have great implications in neuronal communication, memory, and learning. They are one of the major factors in long-term potentiation.

Richard Winyu Tsien, is a Chinese-born American electrical engineer and neurobiologist. He is the Druckenmiller Professor of Neuroscience, Chair of the Department of Physiology and Neuroscience, and Director of the NYU Neuroscience Institute at New York University Medical Center, and also an emeritus faculty member of Stanford University School of Medicine.

Ephaptic coupling is a form of communication within the nervous system and is distinct from direct communication systems like electrical synapses and chemical synapses. It may refer to the coupling of adjacent (touching) nerve fibers caused by the exchange of ions between the cells, or it may refer to coupling of nerve fibers as a result of local electric fields. In either case ephaptic coupling can influence the synchronization and timing of action potential firing in neurons. Myelination is thought to inhibit ephaptic interactions.

<span class="mw-page-title-main">Stephen J Smith (physiologist)</span> American medical academic

Stephen J Smith is Meritorious Investigator at the Allen Institute for Brain Science [1] and Emeritus Professor of Molecular and Cellular Physiology at Stanford University [2]. He held faculty and Howard Hughes Medical Institute positions at the Yale University School of Medicine 1980-1989. He served 1990-2014 as a Stanford Professor, teaching many courses in synaptic physiology and cellular microscopy while mentoring many students and fellows [3]. He also taught in many expert workshops and summer courses at the Woods Hole Marine Biological Laboratory and the Cold Spring Harbor Laboratory.

<span class="mw-page-title-main">Min Zhuo</span> Canadian neuroscientist

Min Zhuo is a pain neuroscientist at the University of Toronto in Canada. He is the Michael Smith Chair in Neuroscience and Mental Health as well as the Canada Research Chair in Pain and Cognition and a Fellow of the Royal Society of Canada. Zhou was hosted in 2017-2018 as a Guest Professor at the Pharmacology Institute at Heidelberg University, Heidelberg.

<span class="mw-page-title-main">Max Bennett (scientist)</span> Australian neuroscientist (born 1939)

Maxwell Richard Bennett is an Australian neuroscientist specializing in the function of synapses.

Jeffry B. Lansman is an American neuroscientist, Professor Emeritus of Cellular and Molecular Pharmacology in the School of Medicine at the University of California, San Francisco and a member of the Graduate Program in Neuroscience, Weill Institute of Neuroscience, and Cardiovascular Research Institute.

References

  1. "Prize lectures". The Physiological Society. Retrieved 8 January 2021.
  2. "Lectures and Prizes". The Physiological Society. 2020. Retrieved 8 January 2021.
  3. "Annual Review Prize Lecture". The Physiological Society. Archived from the original on 20 September 2015. Retrieved 8 January 2021.
  4. Rushton, W. A. H. (1972). "Pigments and signals in colour vision". Journal of Physiology . The Physiological Society. 220 (222): 99P–118P. doi:10.1113/jphysiol.1972.sp009719. PMC   1331666 . PMID   4336741.
  5. Oxygen sensing in animals on YouTube
  6. The molecular mechanisms of signaling at chemical synapses on YouTube
  7. The Cognitive Map Theory of Hippocampal Function: An update on YouTube