Phytoglycogen

Last updated

Phytoglycogen is a type of glycogen extracted from plants. It is a highly branched, water-soluble polysaccharide derived from glucose. [1]

Phytoglycogen is a highly branched polysaccharide used to store glucose in a similar way that glycogen is the glucose storage for animals. It is made up of branched, flexible chains on glucose molecules that grow similarly to synthetic dendrimers. The special structure of the phytoglycogen allows it to have low viscosity, high water retention, as well as high stability in water, and stabilize bioactive compounds and form films on surfaces. Thus, this monodisperse nanoparticle is able to be used in many different technologies. [2]

Related Research Articles

<span class="mw-page-title-main">Carbohydrate</span> Organic compound that consists only of carbon, hydrogen, and oxygen

A carbohydrate is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 and thus with the empirical formula Cm(H2O)n, which does not mean the H has covalent bonds with O. However, not all carbohydrates conform to this precise stoichiometric definition, nor are all chemicals that do conform to this definition automatically classified as carbohydrates.

<span class="mw-page-title-main">Cellulose</span> Polymer of glucose and structural component of cell wall of plants and green algae

Cellulose is an organic compound with the formula (C
6
H
10
O
5
)
n
, a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wall of green plants, many forms of algae and the oomycetes. Some species of bacteria secrete it to form biofilms. Cellulose is the most abundant organic polymer on Earth. The cellulose content of cotton fiber is 90%, that of wood is 40–50%, and that of dried hemp is approximately 57%.

<span class="mw-page-title-main">Glucose</span> Naturally produced monosaccharide

Glucose is a sugar with the molecular formula C6H12O6. Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using energy from sunlight, where it is used to make cellulose in cell walls, the most abundant carbohydrate in the world.

<span class="mw-page-title-main">Polysaccharide</span> Long carbohydrate polymers comprising starch, glycogen, cellulose, and chitin

Polysaccharides, or polycarbohydrates, are the most abundant carbohydrates found in food. They are long-chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with water (hydrolysis) using amylase enzymes as catalyst, which produces constituent sugars. They range in structure from linear to highly branched. Examples include storage polysaccharides such as starch, glycogen and galactogen and structural polysaccharides such as cellulose and chitin.

<span class="mw-page-title-main">Starch</span> Glucose polymer used as energy store in plants

Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human diets, and is contained in large amounts in staple foods such as wheat, potatoes, maize (corn), rice, and cassava (manioc).

<span class="mw-page-title-main">Glycogen</span> Glucose polymer used as energy store in animals

Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. It is the main storage form of glucose in the human body.

<span class="mw-page-title-main">Maltose</span> Chemical compound

Maltose, also known as maltobiose or malt sugar, is a disaccharide formed from two units of glucose joined with an α(1→4) bond. In the isomer isomaltose, the two glucose molecules are joined with an α(1→6) bond. Maltose is the two-unit member of the amylose homologous series, the key structural motif of starch. When beta-amylase breaks down starch, it removes two glucose units at a time, producing maltose. An example of this reaction is found in germinating seeds, which is why it was named after malt. Unlike sucrose, it is a reducing sugar.

<span class="mw-page-title-main">Maltase</span> Enzyme

Maltase is one type of alpha-glucosidase enzymes located in the brush border of the small intestine. This enzyme catalyzes the hydrolysis of disaccharide maltose into two simple sugars of glucose. Maltase is found in plants, bacteria, yeast, humans, and other vertebrates. It is thought to be synthesized by cells of the mucous membrane lining the intestinal wall.

Carbohydrate metabolism is the whole of the biochemical processes responsible for the metabolic formation, breakdown, and interconversion of carbohydrates in living organisms.

<span class="mw-page-title-main">Amylopectin</span> Chemical compound

Amylopectin is a water-insoluble polysaccharide and highly branched polymer of α-glucose units found in plants. It is one of the two components of starch, the other being amylose.

<span class="mw-page-title-main">Reducing sugar</span> Sugars that contain free OH group at the anomeric carbon atom

A reducing sugar is any sugar that is capable of acting as a reducing agent. In an alkaline solution, a reducing sugar forms some aldehyde or ketone, which allows it to act as a reducing agent, for example in Benedict's reagent. In such a reaction, the sugar becomes a carboxylic acid.

<span class="mw-page-title-main">Glycogen phosphorylase</span> Class of enzymes

Glycogen phosphorylase is one of the phosphorylase enzymes. Glycogen phosphorylase catalyzes the rate-limiting step in glycogenolysis in animals by releasing glucose-1-phosphate from the terminal alpha-1,4-glycosidic bond. Glycogen phosphorylase is also studied as a model protein regulated by both reversible phosphorylation and allosteric effects.

<span class="mw-page-title-main">Glycogen synthase</span> Enzyme class, includes all types of glycogen/starch synthases

Glycogen synthase is a key enzyme in glycogenesis, the conversion of glucose into glycogen. It is a glycosyltransferase that catalyses the reaction of UDP-glucose and n to yield UDP and n+1.

<span class="mw-page-title-main">Glycogen debranching enzyme</span> Mammalian protein found in Homo sapiens

A debranching enzyme is a molecule that helps facilitate the breakdown of glycogen, which serves as a store of glucose in the body, through glucosyltransferase and glucosidase activity. Together with phosphorylases, debranching enzymes mobilize glucose reserves from glycogen deposits in the muscles and liver. This constitutes a major source of energy reserves in most organisms. Glycogen breakdown is highly regulated in the body, especially in the liver, by various hormones including insulin and glucagon, to maintain a homeostatic balance of blood-glucose levels. When glycogen breakdown is compromised by mutations in the glycogen debranching enzyme, metabolic diseases such as Glycogen storage disease type III can result.

<span class="mw-page-title-main">Glycogen branching enzyme</span> Mammalian protein involved in glycogen production

1,4-alpha-glucan-branching enzyme, also known as brancher enzyme or glycogen-branching enzyme is an enzyme that in humans is encoded by the GBE1 gene.

A glucan is a polysaccharide derived from D-glucose, linked by glycosidic bonds. Glucans are noted in two forms: alpha glucans and beta glucans. Many beta-glucans are medically important. They represent a drug target for antifungal medications of the echinocandin class.

Equine polysaccharide storage myopathy is a hereditary glycogen storage disease of horses that causes exertional rhabdomyolysis. It is currently known to affect the following breeds American Quarter Horses, American Paint Horses, Warmbloods, Cobs, Dales Ponies, Thoroughbreds, Arabians, New Forest ponies, and a large number of Heavy horse breeds. While incurable, PSSM can be managed with appropriate diet and exercise. There are currently 2 subtypes, known as Type 1 PSSM and Type 2 PSSM.

<span class="mw-page-title-main">UTP—glucose-1-phosphate uridylyltransferase</span> Class of enzymes

UTP—glucose-1-phosphate uridylyltransferase also known as glucose-1-phosphate uridylyltransferase is an enzyme involved in carbohydrate metabolism. It synthesizes UDP-glucose from glucose-1-phosphate and UTP; i.e.,

<span class="mw-page-title-main">Floridean starch</span> Type of storage glucan

Floridean starch is a type of a storage glucan found in glaucophytes and in red algae, in which it is usually the primary sink for fixed carbon from photosynthesis. It is found in grains or granules in the cell's cytoplasm and is composed of an α-linked glucose polymer with a degree of branching intermediate between amylopectin and glycogen, though more similar to the former. The polymers that make up floridean starch are sometimes referred to as "semi-amylopectin".

<span class="mw-page-title-main">Galactogen</span> Chemical compound

Galactogen is a polysaccharide of galactose that functions as energy storage in pulmonate snails and some Caenogastropoda. This polysaccharide is exclusive of the reproduction and is only found in the albumen gland from the female snail reproductive system and in the perivitelline fluid of eggs.

References

  1. Nickels J. D., Atkinson J., Papp-Szabo E., Stanley C., Diallo S. O., Perticaroli S., Baylis B., Mahon P., Ehlers G., Katsaras J., and J. R. Dutcher (2016). Structure and Hydration of Highly-Branched, Monodisperse Phytoglycogen Nanoparticles. Biomacromolecules 17, 3, 735–743, 735-743 DOI: 10.1021/acs.biomac.5b01393
  2. Xue, Jingyi & Luo, Yangchao. (2020). Properties and applications of natural dendritic nanostructures: Phytoglycogen and its derivatives. Trends in Food Science & Technology. 107. 10.1016/j.tifs.2020.11.013.