In mathematics, there are two natural interpretations of the place-permutation action of symmetric groups, in which the group elements act on positions or places. Each may be regarded as either a left or a right action, depending on the order in which one chooses to compose permutations. There are just two interpretations of the meaning of "acting by a permutation " but these lead to four variations, depending whether maps are written on the left or right of their arguments. The presence of so many variations often leads to confusion. When regarding the group algebra of a symmetric group as a diagram algebra [1] it is natural to write maps on the right so as to compute compositions of diagrams from left to right.
First we assume that maps are written on the left of their arguments, so that compositions take place from right to left. Let be the symmetric group [2] on letters, with compositions computed from right to left.
Imagine a situation in which elements of act [3] on the “places” (i.e., positions) of something. The places could be vertices of a regular polygon of sides, the tensor positions of a simple tensor, or even the inputs of a polynomial of variables. So we have places, numbered in order from 1 to , occupied by objects that we can number . In short, we can regard our items as a word of length in which the position of each element is significant. Now what does it mean to act by “place-permutation” on ? There are two possible answers:
Each of these interpretations of the meaning of an “action” by (on the places) is equally natural, and both are widely used by mathematicians. Thus, when encountering an instance of a "place-permutation" action one must take care to determine from the context which interpretation is intended, if the author does not give specific formulas.
Consider the first interpretation. The following descriptions are all equivalent ways to describe the rule for the first interpretation of the action:
This action may be written as the rule .
Now if we act on this by another permutation then we need to first relabel the items by writing . Then takes this to This proves that the action is a left action: .
Now we consider the second interpretation of the action of , which is the opposite of the first. The following descriptions of the second interpretation are all equivalent:
This action may be written as the rule .
In order to act on this by another permutation , again we first relabel the items by writing . Then the action of takes this to This proves that our second interpretation of the action is a right action: .
If is the 3-cycle and is the transposition , then since we write maps on the left of their arguments we have Using the first interpretation we have , the result of which agrees with the action of on . So .
On the other hand, if we use the second interpretation, we have , the result of which agrees with the action of on . So .
Sometimes people like to write maps on the right [4] of their arguments. This is a convenient convention to adopt when working with symmetric groups as diagram algebras, for instance, since then one may read compositions from left to right instead of from right to left. The question is: how does this affect the two interpretations of the place-permutation action of a symmetric group?
The answer is simple. By writing maps on the right instead of on the left we are reversing the order of composition, so in effect we replace by its opposite group . This is the same group, but the order of compositions is reversed.
Reversing the order of compositions evidently changes left actions into right ones, and vice versa, changes right actions into left ones. This means that our first interpretation becomes a right action while the second becomes a left one.
In symbols, this means that the action is now a right action, while the action is now a left action.
We let be the 3-cycle and the transposition , as before. Since we now write maps on the right of their arguments we have Using the first interpretation we have , the result of which agrees with the action of on . So .
On the other hand, if we use the second interpretation, we have , the result of which agrees with the action of on . So .
In conclusion, we summarize the four possibilities considered in this article. Here are the four variations:
Rule | Type of action |
---|---|
left action | |
right action | |
right action | |
left action |
Although there are four variations, there are still only two different ways of acting; the four variations arise from the choice of writing maps on the left or right, a choice which is purely a matter of convention.
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is
In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set.
In mathematics, when X is a finite set with at least two elements, the permutations of X (i.e. the bijective functions from X to X) fall into two classes of equal size: the even permutations and the odd permutations. If any total ordering of X is fixed, the parity (oddness or evenness) of a permutation of X can be defined as the parity of the number of inversions for σ, i.e., of pairs of elements x, y of X such that x < y and σ(x) > σ(y).
In linear algebra, the permanent of a square matrix is a function of the matrix similar to the determinant. The permanent, as well as the determinant, is a polynomial in the entries of the matrix. Both are special cases of a more general function of a matrix called the immanant.
In theoretical physics, path-ordering is the procedure that orders a product of operators according to the value of a chosen parameter:
In signal processing, cross-correlation is a measure of similarity of two series as a function of the displacement of one relative to the other. This is also known as a sliding dot product or sliding inner-product. It is commonly used for searching a long signal for a shorter, known feature. It has applications in pattern recognition, single particle analysis, electron tomography, averaging, cryptanalysis, and neurophysiology. The cross-correlation is similar in nature to the convolution of two functions. In an autocorrelation, which is the cross-correlation of a signal with itself, there will always be a peak at a lag of zero, and its size will be the signal energy.
In mathematics, the rearrangement inequality states that
The Nambu–Goto action is the simplest invariant action in bosonic string theory, and is also used in other theories that investigate string-like objects. It is the starting point of the analysis of zero-thickness string behavior, using the principles of Lagrangian mechanics. Just as the action for a free point particle is proportional to its proper time — i.e., the "length" of its world-line — a relativistic string's action is proportional to the area of the sheet which the string traces as it travels through spacetime.
Mohr's circle is a two-dimensional graphical representation of the transformation law for the Cauchy stress tensor.
In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N), where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(N).
In mathematics, an operad is a structure that consists of abstract operations, each one having a fixed finite number of inputs (arguments) and one output, as well as a specification of how to compose these operations. Given an operad , one defines an algebra over to be a set together with concrete operations on this set which behave just like the abstract operations of . For instance, there is a Lie operad such that the algebras over are precisely the Lie algebras; in a sense abstractly encodes the operations that are common to all Lie algebras. An operad is to its algebras as a group is to its group representations.
In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1) submatrices of B. Specifically, for every i,
In mathematics, a metric connection is a connection in a vector bundle E equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. This is equivalent to:
Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.
The Volterra series is a model for non-linear behavior similar to the Taylor series. It differs from the Taylor series in its ability to capture "memory" effects. The Taylor series can be used for approximating the response of a nonlinear system to a given input if the output of the system depends strictly on the input at that particular time. In the Volterra series, the output of the nonlinear system depends on the input to the system at all other times. This provides the ability to capture the "memory" effect of devices like capacitors and inductors.
The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.
In continuum mechanics, the most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several alternative measures of stress can be defined:
In continuum mechanics, objective stress rates are time derivatives of stress that do not depend on the frame of reference. Many constitutive equations are designed in the form of a relation between a stress-rate and a strain-rate. The mechanical response of a material should not depend on the frame of reference. In other words, material constitutive equations should be frame-indifferent (objective). If the stress and strain measures are material quantities then objectivity is automatically satisfied. However, if the quantities are spatial, then the objectivity of the stress-rate is not guaranteed even if the strain-rate is objective.
In the mathematical field of group theory, an Artin transfer is a certain homomorphism from an arbitrary finite or infinite group to the commutator quotient group of a subgroup of finite index. Originally, such mappings arose as group theoretic counterparts of class extension homomorphisms of abelian extensions of algebraic number fields by applying Artin's reciprocity maps to ideal class groups and analyzing the resulting homomorphisms between quotients of Galois groups. However, independently of number theoretic applications, a partial order on the kernels and targets of Artin transfers has recently turned out to be compatible with parent-descendant relations between finite p-groups, which can be visualized in descendant trees. Therefore, Artin transfers provide a valuable tool for the classification of finite p-groups and for searching and identifying particular groups in descendant trees by looking for patterns defined by the kernels and targets of Artin transfers. These strategies of pattern recognition are useful in purely group theoretic context, as well as for applications in algebraic number theory concerning Galois groups of higher p-class fields and Hilbert p-class field towers.