Plant manufactured pharmaceuticals

Last updated

Plant manufactured Pharmaceuticals are pharmaceuticals derived from genetically modified plants used as therapeutic compounds. This can be used as the replacement for the traditional method of inoculating animals for Cell Culture production. We can use plants to cure and prevent diseases that may have once been deemed incurable. Through biotechnological advancements, we are able to produce complex therapeutic proteins from plant cells. [1] Such Therapeutic Proteins are seen in brands like Enevrel and Remicade for rheumatoid arthritis, Herceptin, a breast cancer treatment. Plants like tobacco are hosts for protein production for applications such as; anemia, hepatitis C & B, hypertension, antimicrobial, and liver disease. [1] [2]

Contents

Impact on business and industry

With the advancement of Plant Manufactured Pharmaceuticals, comes the advancements of a new type production in industry. Companies such as ZEA Biosciences are developing cost-effective and scalable pharmaceutical ingredients using plants instead of cell culture. Unlike cell culture, plants can have a much larger production capacity, a mass quantity of plant hosts on site, and the ability to make specific antibodies that is used as a bio-reactor for specific patient needs. [1] Indirectly, the need to grow plants that are being used as Plant Manufactured Pharmaceuticals will increase in geographic areas where certain plants naturally grow, for instance in developing countries. Increasing the need for agricultural societies in developing countries will help certain countries to export and make trade alliance with other countries and with the development of the therapies that can control diseases like Cholera and HIV/AIDS. [1]

Ideas of enhanced recovery

Landscape Gardens that must be grown for the production of the therapeutic proteins brings a new time of recovery for certain patients. Professor Roger Ulrich of Texas A&M University believes that Therapeutic Gardens can help the spiritual needs of patients and enhance stress recovery. This relieves the patient of stress and gives the patient a feeling of tranquility during their recovery. [1]

Criticism and awareness

Many corporations are allowed to create genetically modified organisms and secure them through intellectual property rights creating monopolies, a fact that continues to evoke criticism . Awareness and education is needed for the public to understand how even GM plants have helped medical research. For instance, in 1992, a group of American students produced a Hepatitis B vaccine from a genetically modified tobacco plant showing the ability of produce pharmaceutical compounds. [1]

Related Research Articles

Biotechnology Use of living systems and organisms to develop or make useful products

Biotechnology is "the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services." The term biotechnology was first used by Károly Ereky in 1919, meaning the production of products from raw materials with the aid of living organisms.

Genetically modified organism Organisms whose genetic material has been altered using genetic engineering methods

A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), from animals to plants and microorganisms. Genes have been transferred within the same species, across species, and even across kingdoms. New genes can be introduced, or endogenous genes can be enhanced, altered, or knocked out.

Genetic engineering Direct manipulation of an organisms genome using biotechnology

Genetic engineering, also called genetic modification or genetic manipulation, is the direct manipulation of an organism's genes using biotechnology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA. A construct is usually created and used to insert this DNA into the host organism. The first recombinant DNA molecule was made by Paul Berg in 1972 by combining DNA from the monkey virus SV40 with the lambda virus. As well as inserting genes, the process can be used to remove, or "knock out", genes. The new DNA can be inserted randomly, or targeted to a specific part of the genome.

Virology Study of viruses

Virology is the scientific study of viruses – submicroscopic, parasitic organisms of genetic material contained in a protein coat – and virus-like agents. It focuses on the following aspects of viruses: their structure, classification and evolution, their ways to infect and exploit host cells for reproduction, their interaction with host organism physiology and immunity, the diseases they cause, the techniques to isolate and culture them, and their use in research and therapy. Virology is a subfield of microbiology.

Agricultural biotechnology, also known as agritech, is an area of agricultural science involving the use of scientific tools and techniques, including genetic engineering, molecular markers, molecular diagnostics, vaccines, and tissue culture, to modify living organisms: plants, animals, and microorganisms. Crop biotechnology is one aspect of agricultural biotechnology which has been greatly developed upon in recent times. Desired trait are exported from a particular species of Crop to an entirely different species. These transgene crops possess desirable characteristics in terms of flavor, color of flowers, growth rate, size of harvested products and resistance to diseases and pests.

Medication Substance used to diagnose, cure, treat, or prevent disease

A medication is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy (pharmacotherapy) is an important part of the medical field and relies on the science of pharmacology for continual advancement and on pharmacy for appropriate management.

Recombinant DNA DNA molecules formed by human agency at a molecular level generating novel DNA sequences

Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination that bring together genetic material from multiple sources, creating sequences that would not otherwise be found in the genome.

Pharming, a portmanteau of "farming" and "pharmaceutical", refers to the use of genetic engineering to insert genes that code for useful pharmaceuticals into host animals or plants that would otherwise not express those genes, thus creating a genetically modified organism (GMO). Pharming is also known as molecular farming, molecular pharming or biopharming.

Personalized medicine Medical model that tailors medical practices to the individual patient

Personalized medicine, also referred to as precision medicine, is a medical model that separates people into different groups—with medical decisions, practices, interventions and/or products being tailored to the individual patient based on their predicted response or risk of disease. The terms personalized medicine, precision medicine, stratified medicine and P4 medicine are used interchangeably to describe this concept though some authors and organisations use these expressions separately to indicate particular nuances.

A biopharmaceutical, also known as a biologic(al) medical product, or biologic, is any pharmaceutical drug product manufactured in, extracted from, or semisynthesized from biological sources. Different from totally synthesized pharmaceuticals, they include vaccines, whole blood, blood components, allergenics, somatic cells, gene therapies, tissues, recombinant therapeutic protein, and living medicines used in cell therapy. Biologics can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, or may be living cells or tissues. They are isolated from living sources—human, animal, plant, fungal, or microbial. They can be used in both human and animal medicine.

Enzyme replacement therapy (ERT) is a medical treatment which replaces an enzyme that is deficient or absent in the body. Usually, this is done by giving the patient an intravenous (IV) infusion of a solution containing the enzyme.

Viral vectors are tools commonly used by molecular biologists to deliver genetic material into cells. This process can be performed inside a living organism or in cell culture. Viruses have evolved specialized molecular mechanisms to efficiently transport their genomes inside the cells they infect. Delivery of genes or other genetic material by a vector is termed transduction and the infected cells are described as transduced. Molecular biologists first harnessed this machinery in the 1970s. Paul Berg used a modified SV40 virus containing DNA from the bacteriophage λ to infect monkey kidney cells maintained in culture.

<i>Ogataea polymorpha</i> Species of fungus

Ogataea polymorpha is a methylotrophic yeast with unusual characteristics. It is used as a protein factory for pharmaceuticals.

A yeast expression platform is a strain of yeast used to produce large amounts of proteins, sugars or other compounds for research or industrial uses. While yeast are often more resource-intensive to maintain than bacteria, certain products can only be produced by eukaryotic cells like yeast, necessitating use of a yeast expression platform. Yeasts differ in productivity and with respect to their capabilities to secrete, process and modify proteins. As such, different types of yeast are better suited for different research and industrial applications.

Biomolecular engineering is the application of engineering principles and practices to the purposeful manipulation of molecules of biological origin. Biomolecular engineers integrate knowledge of biological processes with the core knowledge of chemical engineering in order to focus on molecular level solutions to issues and problems in the life sciences related to the environment, agriculture, energy, industry, food production, biotechnology and medicine.

Genetically modified plant Plants with human-introduced genes from other organisms

Genetically modified plants have been engineered for scientific research, to create new colours in plants, deliver vaccines, and to create enhanced crops. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. Many plant cells are pluripotent, meaning that a single cell from a mature plant can be harvested and then under the right conditions form a new plant. This ability can be taken advantage of by genetic engineers; by selecting for cells that have been successfully transformed in an adult plant a new plant can then be grown that contains the transgene in every cell through a process known as tissue culture.

Passive immunization is a medical strategy long employed to provide temporary protection against pathogens. Early implementations involved recovering ostensibly cell-free plasma from the blood of human survivors or from non-human animals deliberately exposed to a specific pathogen or toxin. These approaches resulted in crude purifications of plasma-soluble proteins including antibodies.

Genetically modified bacteria First organisms to be modified in the laboratory

Genetically modified bacteria were the first organisms to be modified in the laboratory, due to their simple genetics. These organisms are now used for several purposes, and are particularly important in producing large amounts of pure human proteins for use in medicine.

Santaris Pharma A/S was a biopharmaceutical company founded in 2003 in Copenhagen, Denmark. The company also had a branch in San Diego, California that opened in 2009. Created by a merger between Cureon and Pantheco, Santaris developed RNA-targeted medicines using a Locked Nucleic Acid (LNA) Drug Platform and Drug Development Engine.

The phrase edible vaccines was first used by Charles Arntzen in 1990 and refers to any foods; typically plants, that produce vitamins, proteins or other nourishment that act as a vaccine against a certain disease. Once the plant, fruit, or plant derived product is ingested orally, it stimulates the immune system. Specifically, it stimulates both the mucosal and humoral immune systems. Edible vaccines are genetically modified crops that contain added “immunity” for specific diseases. Edible vaccines offer many benefits over traditional vaccines, due to their lower manufacturing cost and a lack of negative side effects. However, there are limitations as edible vaccines are still new and developing. Further research will need to be done before they are ready for widespread human consumption. Edible vaccines are currently being developed for measles, cholera, foot and mouth disease, Hepatitis B and Hepatitis C.

References

  1. 1 2 3 4 5 6 Horton, Susannah (2012). RETHINKING THE INDUSTRIAL LANDSCAPE - REVEALING THE CURATIVE POTENTIAL OF GENETICALLY MODIFIED PLANTS. Clemson University: ProQuest LLC. pp. 1–18.
  2. THOMAS, BRUCE. "Production of Therapeutic Proteins in Plants" (PDF). UNIVERSITY OF CALIFORNIA Division of Agriculture and Natural Resources. Retrieved 2 May 2013.