PlatBox Project

Last updated

PlatBox Project, formally known as Boxed Economy Project, is a multi-agent based computer simulation software development project founded by Iba Laboratory at Keio University, Japan. The main work of PlatBox Project is to develop PlatBox Simulator and Component Builder, which are claimed to be the first multi-agent computer simulation software that do not require end-users to have any computer programming skill in order to create and execute multi-agent computer simulation models. Currently, the project is organized by Takashi Iba, assistant professor from Keio University, and Nozomu Aoyama. PlatBox Simulator and Component Builder are currently offered only in Japanese; however, the English version is expected to be out anytime soon.

Contents

PlatBox Simulator

PlatBox Simulator is a multi-agent based simulation platform developed by PlatBox Project.

ComponentBuilder

ComponentBuilder is a multi-agent based simulation modeling tool developed by PlatBox Project.

See also

Articles

Related Research Articles

Social simulation is a research field that applies computational methods to study issues in the social sciences. The issues explored include problems in computational law, psychology, organizational behavior, sociology, political science, economics, anthropology, geography, engineering, archaeology and linguistics.

Experimental economics is the application of experimental methods to study economic questions. Data collected in experiments are used to estimate effect size, test the validity of economic theories, and illuminate market mechanisms. Economic experiments usually use cash to motivate subjects, in order to mimic real-world incentives. Experiments are used to help understand how and why markets and other exchange systems function as they do. Experimental economics have also expanded to understand institutions and the law.

<span class="mw-page-title-main">Ant colony optimization algorithms</span> Optimization algorithm

In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. Artificial ants stand for multi-agent methods inspired by the behavior of real ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations of artificial ants and local search algorithms have become a method of choice for numerous optimization tasks involving some sort of graph, e.g., vehicle routing and internet routing.

<span class="mw-page-title-main">Multi-agent system</span> Built of multiple interacting agents

A multi-agent system is a computerized system composed of multiple interacting intelligent agents. Multi-agent systems can solve problems that are difficult or impossible for an individual agent or a monolithic system to solve. Intelligence may include methodic, functional, procedural approaches, algorithmic search or reinforcement learning.

<span class="mw-page-title-main">Social complexity</span> Conceptual framework

In sociology, social complexity is a conceptual framework used in the analysis of society. In the sciences, contemporary definitions of complexity are found in systems theory, wherein the phenomenon being studied has many parts and many possible arrangements of the parts; simultaneously, what is complex and what is simple are relative and change in time.

<span class="mw-page-title-main">Computational sociology</span> Branch of the discipline of sociology

Computational sociology is a branch of sociology that uses computationally intensive methods to analyze and model social phenomena. Using computer simulations, artificial intelligence, complex statistical methods, and analytic approaches like social network analysis, computational sociology develops and tests theories of complex social processes through bottom-up modeling of social interactions.

An agent-based model (ABM) is a computational model for simulating the actions and interactions of autonomous agents in order to understand the behavior of a system and what governs its outcomes. It combines elements of game theory, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming. Monte Carlo methods are used to understand the stochasticity of these models. Particularly within ecology, ABMs are also called individual-based models (IBMs). A review of recent literature on individual-based models, agent-based models, and multiagent systems shows that ABMs are used in many scientific domains including biology, ecology and social science. Agent-based modeling is related to, but distinct from, the concept of multi-agent systems or multi-agent simulation in that the goal of ABM is to search for explanatory insight into the collective behavior of agents obeying simple rules, typically in natural systems, rather than in designing agents or solving specific practical or engineering problems.

<span class="mw-page-title-main">Intelligent agent</span> Software agent which acts autonomously

In artificial intelligence, an intelligent agent (IA) is an agent acting in an intelligent manner; It perceives its environment, takes actions autonomously in order to achieve goals, and may improve its performance with learning or acquiring knowledge. An intelligent agent may be simple or complex: A thermostat or other control system is considered an example of an intelligent agent, as is a human being, as is any system that meets the definition, such as a firm, a state, or a biome.

Vasant G. Honavar is an Indian born American computer scientist, and artificial intelligence, machine learning, big data, data science, causal inference, knowledge representation, bioinformatics and health informatics researcher and professor.

Dynamic network analysis (DNA) is an emergent scientific field that brings together traditional social network analysis (SNA), link analysis (LA), social simulation and multi-agent systems (MAS) within network science and network theory. Dynamic networks are a function of time to a set of graphs; for each time point there is a graph. This is akin to the definition of dynamical systems, in which the function is from time to an ambient space, where instead of ambient space time is translated to relationships between pairs of vertices.

Agent-based computational economics (ACE) is the area of computational economics that studies economic processes, including whole economies, as dynamic systems of interacting agents. As such, it falls in the paradigm of complex adaptive systems. In corresponding agent-based models, the "agents" are "computational objects modeled as interacting according to rules" over space and time, not real people. The rules are formulated to model behavior and social interactions based on incentives and information. Such rules could also be the result of optimization, realized through use of AI methods.

Reverse computation is a software application of the concept of reversible computing.

Sheri Marina Markose is a computational economist. She is a professor of Economics at the University of Essex, where she holds a personal chair since 2006. She is the founding director (2002-2009) of the Centre for Computational Finance and Economic Agents (CCFEA) at Essex. At CCFEA, with the support of the then Vice Chancellor, Ivor Crewe, she pioneered multi-disciplinary research as well as PhD and Masters programs, which include Agent-based computational economics, financial market modelling with extreme events and markets as complex adaptive systems.

<span class="mw-page-title-main">ACEGES</span>

The ACEGES model is a decision support tool for energy policy by means of controlled computational experiments. The ACEGES tool is designed to be the foundation for large custom-purpose simulations of the global energy system. The ACEGES methodological framework, developed by Voudouris (2011) by extending Voudouris (2010), is based on the agent-based computational economics (ACE) paradigm. ACE is the computational study of economies modeled as evolving systems of autonomous interacting agents.

<span class="mw-page-title-main">Juan Pavón</span> Spanish computer scientist (b.1962)

Juan Pavón is a Spanish computer scientist, full professor of the Complutense University of Madrid (UCM). He is a pioneer researcher in the field of Software Agents, co-creator of the FIPA MESSAGE and INGENIAS methodologies, and founder and director of the research group GRASIA: GRoup of Agent-based, Social and Interdisciplinary Applications at UCM. He is known for his work in the field of Artificial Intelligence, specifically in agent-oriented software engineering. He has been often cited by mainstream media, as a reference in Artificial Intelligence.

Computational social science is the academic sub-discipline concerned with computational approaches to the social sciences. This means that computers are used to model, simulate, and analyze social phenomena. Fields include computational economics, computational sociology, cliodynamics, culturomics, nonprofit studies, and the automated analysis of contents, in social and traditional media. It focuses on investigating social and behavioral relationships and interactions through social simulation, modeling, network analysis, and media analysis.

Muhammad Afzal Upal is a writer and a cognitive scientist with contributions to cognitive science of religion, machine learning for planning, and agent-based social simulation.

Artificial Economics can be defined as ″a research field that aims at improving our understanding of socioeconomic processes with the help of computer simulation″. Like in Theoretical Economics, the approach followed in Artificial Economics to gain understanding of socioeconomic processes involves building and analysing formal models. However, in contrast with Theoretical Economics, models in Artificial Economics are implemented in a programming language so that computers can be employed to analyse them.

Behavior informatics (BI) is the informatics of behaviors so as to obtain behavior intelligence and behavior insights. BI is a research method combining science and technology, specifically in the area of engineering. The purpose of BI includes analysis of current behaviors as well as the inference of future possible behaviors. This occurs through pattern recognition.

Argument technology is a sub-field of collective intelligence and artificial intelligence that focuses on applying computational techniques to the creation, identification, analysis, navigation, evaluation and visualisation of arguments and debates.