Polarization ripples

Last updated
Scheme of periodic structures of nearly 300 nm deep with a period of 800 nm. Scheme of near-wavelength periodic surface structures induced by ultrasort laser irradiation.png
Scheme of periodic structures of nearly 300 nm deep with a period of 800 nm.

Polarization ripples are parallel oscillations which have been observed since the 1960s [1] on the bottom of pulsed laser irradiation of semiconductors. They have the property to be very dependent to the orientation of the laser electric field.

Contents

Since the wide availability of femtosecond lasers, such structures have been observed on metals, semiconductors, but also on dielectrics. Moreover, the ripples can reach far sub-wavelength periodicities until 100 nm as recently observed in titanium. [2] The "cumulative" changes occurring from pulse to pulse in the material properties are still under investigation.

Formation mechanisms

The formation mechanisms are still under debate. However, two types of formation mechanisms can be underlined:

The set of resonant mechanisms leading to formation of ripple is defined by the strong link between ripple periodicity and laser wavelength. [5] It includes the excitation of surface electromagnetic wave such as surface plasmon polariton, and surface waves excited by an isolated defect or surface roughness, especially under femtosecond irradiation [6]

An alternative mechanism that assumes the synergy of electron excitation and capillary wave solidification has been also proposed to explain both the formation of ripples and the observed ripple periodicity. [7] An extension of the mechanism was also proposed to account for the development of periodic structures with periodicity larger than the laser beam's wavelength (i.e. grooves) that are formed perpendicularly to the subwavelength-sized ripples; the proposed physical mechanism assumes the erasing of periodic energy deposition followed by the formation of hydrothermal convection rolls that propagate parallel to the electric field polarisation. [8]

The analogy of the structure shape with the solution of Kuramoto-Sivashinsky equations is often mentioned to support different theories such as defect accumulation, [9] or ultrafast modification of the atomic lattice. [10]

Applications

Their interest is about potential applications in building microfluidic channels, changing the color of materials, [11] modifying local electrical properties, and building sub-diffraction-limit optical diffraction gratings.

They also constitute the first stage of the Black Silicon formation process by femtosecond irradiation.

Related Research Articles

Crystallographic defect Disruption of the periodicity of a crystal lattice

Crystallographic defects are interruptions of regular patterns in crystalline solids. They are common because positions of atoms or molecules at repeating fixed distances determined by the unit cell parameters in crystals, which exhibit a periodic crystal structure, are usually imperfect.

Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

Polaritonics is an intermediate regime between photonics and sub-microwave electronics. In this regime, signals are carried by an admixture of electromagnetic and lattice vibrational waves known as phonon-polaritons, rather than currents or photons. Since phonon-polaritons propagate with frequencies in the range of hundreds of gigahertz to several terahertz, polaritonics bridges the gap between electronics and photonics. A compelling motivation for polaritonics is the demand for high speed signal processing and linear and nonlinear terahertz spectroscopy. Polaritonics has distinct advantages over electronics, photonics, and traditional terahertz spectroscopy in that it offers the potential for a fully integrated platform that supports terahertz wave generation, guidance, manipulation, and readout in a single patterned material.

Laser snow is the precipitation through a chemical reaction, condensation and coagulation process, of clustered atoms or molecules, induced by passing a laser beam through certain gasses. It was first observed by Tam, Moe and Happer in 1975, and has since been noted in a number of gases.

In physics, induced gamma emission (IGE) refers to the process of fluorescent emission of gamma rays from excited nuclei, usually involving a specific nuclear isomer. It is analogous to conventional fluorescence, which is defined as the emission of a photon by an excited electron in an atom or molecule. In the case of IGE, nuclear isomers can store significant amounts of excitation energy for times long enough for them to serve as nuclear fluorescent materials. There are over 800 known nuclear isomers but almost all are too intrinsically radioactive to be considered for applications. As of 2006 there were two proposed nuclear isomers that appeared to be physically capable of IGE fluorescence in safe arrangements: tantalum-180m and hafnium-178m2.

Crystallographic defects in diamond

Imperfections in the crystal lattice of diamond are common. Such defects may be the result of lattice irregularities or extrinsic substitutional or interstitial impurities, introduced during or after the diamond growth. The defects affect the material properties of diamond and determine to which type a diamond is assigned; the most dramatic effects are on the diamond color and electrical conductivity, as explained by the electronic band structure.

Self-focusing

Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as a focusing lens for an electromagnetic wave characterized by an initial transverse intensity gradient, as in a laser beam. The peak intensity of the self-focused region keeps increasing as the wave travels through the medium, until defocusing effects or medium damage interrupt this process. Self-focusing of light was discovered by Gurgen Askaryan.

Caesium hydride Chemical compound

Caesium hydride or cesium hydride (CsH) is a compound of caesium and hydrogen. It is an alkali metal hydride. It was the first substance to be created by light-induced particle formation in metal vapor, and showed promise in early studies of an ion propulsion system using caesium. It is the most reactive stable alkaline metal hydride of all. It is a powerful superbase and reacts with water extremely vigorously.

Collision cascade

A collision cascade is a set of nearby adjacent energetic collisions of atoms induced by an energetic particle in a solid or liquid.

Stopping and Range of Ions in Matter (SRIM) is a group of computer programs which calculate interaction of ions with matter; the core of SRIM is a program Transport of ions in matter (TRIM). SRIM is popular in the ion implantation research and technology community and also used widely in other branches of radiation material science.

Interatomic Coulombic decay (ICD) is a general, fundamental property of atoms and molecules which have neighbors. Interatomic (intermolecular) Coulombic decay is a very efficient interatomic (intermolecular) relaxation process of an electronically excited atom or molecule embedded in an environment. Without the environment the process cannot take place. Until now it has been mainly demonstrated for atomic and molecular clusters, independently of whether they are of van-der-Waals or hydrogen bonded type.

Silicene Two-dimensional allotrope of silicon

Silicene is a two-dimensional allotrope of silicon, with a hexagonal honeycomb structure similar to that of graphene. Contrary to graphene, silicene is not flat, but has a periodically buckled topology; the coupling between layers in silicene is much stronger than in multilayered graphene; and the oxidized form of silicene, 2D silica, has a very different chemical structure from graphene oxide.

Double ionization is a process of formation of doubly charged ions when laser radiation is exerted on neutral atoms or molecules. Double ionization is usually less probable than single-electron ionization. Two types of double ionization are distinguished: sequential and non-sequential.

Bond softening is an effect of reducing the strength of a chemical bond by strong laser fields. To make this effect significant, the strength of the electric field in the laser light has to be comparable with the electric field the bonding electron "feels" from the nuclei of the molecule. Such fields are typically in the range of 1–10 V/Å, which corresponds to laser intensities 1013–1015 W/cm2. Nowadays, these intensities are routinely achievable from table-top Ti:Sapphire lasers.

Bond hardening is a process of creating a new chemical bond by strong laser fields—an effect opposite to bond softening. However, it is not opposite in the sense that the bond becomes stronger, but in the sense that the molecule enters a state that is diametrically opposite to the bond-softened state. Such states require laser pulses of high intensity, in the range of 1013–1015 W/cm2, and they disappear once the pulse is gone.

Nam Chang-hee

Nam Chang-hee is a South Korean plasma physicist. Nam is specializing in the exploration of relativistic laser-matter interactions using femtosecond PW lasers. Currently he is professor of physics at Gwangju Institute of Science and Technology and director of the Center for Relativistic Laser Science as a part of the Institute for Basic Science (IBS).

Breit–Wheeler process Physical process for creating a positron-electron pair from the collision of two photons

The Breit–Wheeler process or Breit–Wheeler pair production is a physical process in which a positron–electron pair is created from the collision of two photons. It is the simplest mechanism by which pure light can be potentially transformed into matter. The process can take the form γ γ′ → e+ e where γ and γ′ are two light quanta.

Polymerization-induced phase separation (PIPS) is the occurrence of phase separation in a multicomponent mixture induced by the polymerization of one or more components. The increase in molecular weight of the reactive component renders one or more components to be mutually immiscible in one another, resulting in spontaneous phase segregation.

High Harmonic Generation (HHG) is a non-perturbative and extremely nonlinear optical process taking place when a highly intense ultrashort laser pulse undergoes an interaction with a nonlinear media. A typical high order harmonic spectra contains frequency combs separated by twice the laser frequency. HHG is an excellent table top source of highly coherent extreme ultraviolet and soft X-ray laser pulses.

Linda Young is a distinguished fellow at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and a professor at the University of Chicago’s Department of Physics and James Franck Institute. Young is also the former director of Argonne’s X-ray Science Division.

References

  1. Birnbaum, Milton (November 1965). "Semiconductor Surface Damage Produced by Ruby Lasers". Journal of Applied Physics. 36 (11): 3688–3689. Bibcode:1965JAP....36.3688B. doi:10.1063/1.1703071.
  2. Bonse, J. (2013). "Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti: sapphire femtosecond laser pulses in air". Applied Physics A. 110 (3): 547–551. Bibcode:2013ApPhA.110..547B. doi:10.1007/s00339-012-7140-y.
  3. Sipe, J.E.; J.F. Young; J.S. Preston; H.M. Van Driel (1983). "Laser-induced periodic surface structure. I. Theory". Physical Review B. 27 (2): 1141–1154. Bibcode:1983PhRvB..27.1141S. doi:10.1103/PhysRevB.27.1141.
  4. Miyaji, G.; K. Miyazaki (2008). "Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses". Optics Express. 16 (20): 16265–16271. Bibcode:2008OExpr..1616265M. doi: 10.1364/OE.16.016265 .
  5. Guosheng, Zhou; Fauchet, P.; Siegman, A. (1 November 1982). "Growth of spontaneous periodic surface structures on solids during laser illumination". Physical Review B. 26 (10): 5366–5381. Bibcode:1982PhRvB..26.5366G. doi:10.1103/PhysRevB.26.5366.
  6. Derrien, Thibault .J.-Y.; Torres, R.; Sarnet, T.; Sentis, M.; Itina, T.E. (1 October 2011). "Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments". Applied Surface Science. 258 (23): 9487–9490. arXiv: 1108.1685 . Bibcode:2012ApSS..258.9487D. doi:10.1016/j.apsusc.2011.10.084.
  7. Tsibidis, G.D.; Barberoglou, M.; Loukakos, P.A.; Stratakis, E.; Fotakis, C. (2012). "Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions". Physical Review B. 86 (11): 115316. arXiv: 1109.2568 . Bibcode:2012PhRvB..86k5316T. doi:10.1103/PhysRevB.86.115316.
  8. Tsibidis, G.D.; Fotakis, M.; Stratakis, E. (2015). "From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures". Physical Review B. 92 (4): 041405(R). arXiv: 1505.04381 . Bibcode:2015PhRvB..92d1405T. doi:10.1103/PhysRevB.92.041405.
  9. Emel'yanov, V.I. (2009). "The Kuramoto-Sivashinsky equation for the defect-deformation instability of a surface-stressed nanolayer". Laser Physics. 19 (3): 538–543. Bibcode:2009LaPhy..19..538E. doi:10.1134/S1054660X0903030X.
  10. Varlamova, Olga; Juergen Reif (August 2013). "Influence of irradiation dose on laser-induced surface nanostructures on silicon" (PDF). Applied Surface Science. 278: 62–66. Bibcode:2013ApSS..278...62V. doi:10.1016/j.apsusc.2012.10.140.
  11. Vorobyev, A. Y.; Chunlei Guo (2008). "Colorizing metals with femtosecond laser pulses". Applied Physics Letters. 92 (4): 041914. Bibcode:2008ApPhL..92d1914V. doi:10.1063/1.2834902.