This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(December 2014) |
Positive vorticity advection, or PVA, is the result of more cyclonic values of vorticity advecting into lower values of vorticity. It is more generally referred to as "Cyclonic Vorticity Advection" (CVA). In the Northern Hemisphere this is positive, whilst in the Southern Hemisphere it is negative.
Vorticity in the atmosphere is created in three different ways, which are named in their resultant vorticity. These are; Coriolis vorticity, curvature vorticity, and shear vorticity. For example, at the base of a trough, there is curvature and shear vorticity. Curvature vorticity is due to the increasing cyclonic turning as an air parcel enters the trough base. The maximum counter-clockwise spin (positive vorticity in the Northern Hemisphere) is at the trough base. Shear vorticity is caused by the difference in wind speed between air moving through the trough base (typically a jet or jet finger) and slower moving air on either poleward and equatorward side of the faster flow. Consider that slower air to the poleward side will be imparted counter-clockwise spin (picture faster moving air (jet) south and slower air to the north, spin is created). Thus, to the north (poleward) of the trough base an air parcel will experience positive vorticity. Likewise, to the south of the faster flow the air is spun in a clockwise direction (faster air (jet)to the north with slower air to the south, spin is created). Thus, to the south of the faster winds will be an area of negative vorticity.
When these areas of negative and positive vorticity are moved (advected) they produce areas of negative vorticity advection (NVA) and positive vorticity advection (PVA) respectively, downstream from the trough base. The positive vorticity advection area is typically associated with divergence and upward motion. The negative vorticity advection area will be associated with convergence and downward motion.[ citation needed ]
This produces convergence because of the way the air gains cyclonic vorticity while entering the base of the trough. The opposite happens when air is exiting the base of a trough. This air has more cyclonic vorticity than the air it is entering and therefore produces CVA. CVA produces divergence as a result of how there is a loss of cyclonic vorticity. Coriolis vorticity in this situation is ignored because it acts about the same on all the air flowing through the base of the trough.
The divergence with CVA is significant because it creates forced lift in the atmosphere. This forced lift, in the presence of conditions favorable for atmospheric convection, can cause clouds or precipitation. AVA will do the opposite and lead to a stable atmosphere. In combination with a jet streak, CVA can lead to the amplification of a trough which is significant for forecasting many conditions of the atmosphere.
Jet streams are fast flowing, narrow air currents in the Earth's atmosphere.
In meteorology, a cyclone is a large air mass that rotates around a strong center of low atmospheric pressure, counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere as viewed from above. Cyclones are characterized by inward-spiraling winds that rotate about a zone of low pressure. The largest low-pressure systems are polar vortices and extratropical cyclones of the largest scale. Warm-core cyclones such as tropical cyclones and subtropical cyclones also lie within the synoptic scale. Mesocyclones, tornadoes, and dust devils lie within the smaller mesoscale.
An anticyclone is a weather phenomenon defined as a large-scale circulation of winds around a central region of high atmospheric pressure, clockwise in the Northern Hemisphere and counterclockwise in the Southern Hemisphere as viewed from above. Effects of surface-based anticyclones include clearing skies as well as cooler, drier air. Fog can also form overnight within a region of higher pressure.
A high-pressure area, high, or anticyclone, is an area near the surface of a planet where the atmospheric pressure is greater than the pressure in the surrounding regions. Highs are middle-scale meteorological features that result from interplays between the relatively larger-scale dynamics of an entire planet's atmospheric circulation.
In meteorology, a low-pressure area, low area or low is a region where the atmospheric pressure is lower than that of surrounding locations. Low-pressure areas are commonly associated with inclement weather, while high-pressure areas are associated with lighter winds and clear skies. Winds circle anti-clockwise around lows in the northern hemisphere, and clockwise in the southern hemisphere, due to opposing Coriolis forces. Low-pressure systems form under areas of wind divergence that occur in the upper levels of the atmosphere (aloft). The formation process of a low-pressure area is known as cyclogenesis. In meteorology, atmospheric divergence aloft occurs in two kinds of places:
Cyclogenesis is the development or strengthening of cyclonic circulation in the atmosphere. Cyclogenesis is an umbrella term for at least three different processes, all of which result in the development of some sort of cyclone, and at any size from the microscale to the synoptic scale.
In atmospheric science, the thermal wind is the vector difference between the geostrophic wind at upper altitudes minus that at lower altitudes in the atmosphere. It is the hypothetical vertical wind shear that would exist if the winds obey geostrophic balance in the horizontal, while pressure obeys hydrostatic balance in the vertical. The combination of these two force balances is called thermal wind balance, a term generalizable also to more complicated horizontal flow balances such as gradient wind balance.
A weather front is a boundary separating air masses for which several characteristics differ, such as air density, wind, temperature, and humidity. Disturbed and unstable weather due to these differences often arises along the boundary. For instance, cold fronts can bring bands of thunderstorms and cumulonimbus precipitation or be preceded by squall lines, while warm fronts are usually preceded by stratiform precipitation and fog. In summer, subtler humidity gradients known as dry lines can trigger severe weather. Some fronts produce no precipitation and little cloudiness, although there is invariably a wind shift.
A trough is an elongated region of relatively low atmospheric pressure without a closed isobaric contour that would define it as a low pressure area. Since low pressure implies a low height on a pressure surface, troughs and ridges refer to features in an identical sense as those on a topographic map.
In meteorology a ridge or barometric ridge is an elongated area of relatively high atmospheric pressure compared to the surrounding environment, without being a closed circulation. It is associated with an area of maximum anticyclonic curvature of wind flow. The ridge originates in the center of an anticyclone and sandwiched between two low-pressure areas, and the locus of the maximum curvature is called the ridge line. This phenomenon is the opposite of a trough.
The Sverdrup balance, or Sverdrup relation, is a theoretical relationship between the wind stress exerted on the surface of the open ocean and the vertically integrated meridional (north-south) transport of ocean water.
The monsoon trough is a portion of the Intertropical Convergence Zone in the Western Pacific, as depicted by a line on a weather map showing the locations of minimum sea level pressure, and as such, is a convergence zone between the wind patterns of the southern and northern hemispheres.
Tropical cyclogenesis is the development and strengthening of a tropical cyclone in the atmosphere. The mechanisms through which tropical cyclogenesis occur are distinctly different from those through which temperate cyclogenesis occurs. Tropical cyclogenesis involves the development of a warm-core cyclone, due to significant convection in a favorable atmospheric environment.
A splitting storm is a phenomenon when a convective thunderstorm will separate into two supercells, with one propagating towards the left and the other to the right of the mean wind shear direction across a deep layer of the troposphere. In most cases, this mean wind shear direction is roughly coincident with the direction of the mean wind. Each resulting cell bears an updraft that rotates opposite of the updraft in the other cell, with the left mover exhibiting a clockwise-rotating updraft and the right mover exhibiting a counterclockwise-rotating updraft. Storm splitting, if it occurs, tends to occur within an hour of the storm's formation.
In atmospheric science, balanced flow is an idealisation of atmospheric motion. The idealisation consists in considering the behaviour of one isolated parcel of air having constant density, its motion on a horizontal plane subject to selected forces acting on it and, finally, steady-state conditions.
A shortwave or shortwave trough is an embedded kink in the trough / ridge pattern. Its length scale is much smaller than that of and is embedded within longwaves, which are responsible for the largest scale weather systems. Shortwaves may be contained within or found ahead of longwaves and range from the mesoscale to the synoptic scale. Shortwaves are most frequently caused by either a cold pool or an upper level front. Shortwaves are commonly referred to as a vorticity maximum.
The omega equation is a culminating result in synoptic-scale meteorology. It is an elliptic partial differential equation, named because its left-hand side produces an estimate of vertical velocity, customarily expressed by symbol , in a pressure coordinate measuring height the atmosphere. Mathematically, , where represents a material derivative. The underlying concept is more general, however, and can also be applied to the Boussinesq fluid equation system where vertical velocity is in altitude coordinate z.
A cold front is the leading edge of a cooler mass of air at ground level that replaces a warmer mass of air and lies within a pronounced surface trough of low pressure. It often forms behind an extratropical cyclone, at the leading edge of its cold air advection pattern—known as the cyclone's dry "conveyor belt" flow. Temperature differences across the boundary can exceed 30 °C (54 °F) from one side to the other. When enough moisture is present, rain can occur along the boundary. If there is significant instability along the boundary, a narrow line of thunderstorms can form along the frontal zone. If instability is weak, a broad shield of rain can move in behind the front, and evaporative cooling of the rain can increase the temperature difference across the front. Cold fronts are stronger in the fall and spring transition seasons and are weakest during the summer.
The following is a glossary of tornado terms. It includes scientific as well as selected informal terminology.
In fluid mechanics, topographic steering is the effect of potential vorticity conservation on the motion of a fluid parcel. This means that the fluid parcels will not only react to physical obstacles in their path, but also to changes in topography or latitude. The two types of 'fluids' where topographic steering is mainly observed in daily life are air and water in respectively the atmosphere and the oceans. Examples of topographic steering can be found in, among other things, paths of low pressure systems and oceanic currents.