Postbiotic

Last updated

Postbiotics - also known as metabiotics, biogenics, or simply metabolites - are soluble factors (metabolic products or byproducts), secreted by live bacteria, or released after bacterial lysis providing physiological benefits to the host. [1]

Contents

However, this term is sometimes also used with regards to paraprobiotics - immobilised probiotics, which when ingested, may have the ability to exert positive biological responses and restore intestinal homeostasis in a similar manner to probiotics. [2] Paraprobiotics are currently being referred to as modified, [3] inactivated, non-viable, [4] para- or ghost probiotics. [5] Probiotics are widely used and accepted in many countries in clinical practice. Paraprobiotics, the immobilised version of probiotics are gaining traction in recent years due to the concerns about the possibility of low tolerance of probiotics, especially in paediatric populations and in severely ill or immunocompromised patients. [6] Paraprobiotics seem to have similar beneficial properties as live probiotics with fewer of the constraints associated with unstable, diminishing bacteria. [6]

Paraprobiotics types

Paraprobiotics could be generated using different methods: [6]

In most cases heat treatment is considered the method of choice for deactivating probiotic strains. The effect that different types of inactivation have on bacterial structure and components as well as the maintenance of probiotic properties requires further research.[ citation needed ]

Mechanism of action

The mechanisms of action for paraprobiotics is less understood, though the possible mechanisms include immune system regulation and interference with pathogen attachment to host cells. Limited research hypothesises that immobilised paraprobiotics release key bacterial components, such as lipoteichoic acids, peptidoglycans, or exopolysaccharides which exhibit key immunomodulating effects and antagonising properties against pathogens. [6]

General paraprobiotics applications

As paraprobiotics are newly emerging, so is the evidence to support the use of paraprobiotics. Emerging clinical and pre-clinical studies have demonstrated that paraprobiotics play a role in general health and well-being and for improving host immune function like that of probiotics. [7] [8] [9] It is paraproulated that paraprobiotics induce changes in the gut microbiome and the altered gut microbial composition is associated with increased levels of innate and acquired immunity biomarkers. [10] paraprobiotics also seem to exhibit antioxidant effects and has indicated its potential applications in food and pharmaceutical industries. [11]

Paraprobiotics applications in biotherapy

Paraprobiotics (mostly heat-killed) have been evaluated in small study sizes and seem to be beneficial for the following clinical applications:

Species used as paraprobiotics

Many species of bacteria have been identified to have benefits as paraprobiotic strains:

Related Research Articles

<i>Lactobacillus</i> Genus of bacteria

Lactobacillus is a genus of gram-positive, aerotolerant anaerobes or microaerophilic, rod-shaped, non-spore-forming bacteria. Until 2020, the genus Lactobacillus comprised over 260 phylogenetically, ecologically, and metabolically diverse species; a taxonomic revision of the genus assigned lactobacilli to 25 genera.

<span class="mw-page-title-main">Probiotic</span> Microorganisms said to provide health benefits when consumed

Probiotics are live microorganisms promoted with claims that they provide health benefits when consumed, generally by improving or restoring the gut microbiota. Probiotics are considered generally safe to consume, but may cause bacteria-host interactions and unwanted side effects in rare cases. There is some evidence that probiotics are beneficial for some conditions, but there is little evidence for many of the health benefits claimed for them.

<i>Lactobacillus acidophilus</i> Species of bacterium

Lactobacillus acidophilus is a rod-shaped, Gram-positive, homofermentative, anaerobic microbe first isolated from infant feces in the year 1900. The species is most commonly found in humans, specifically the gastrointestinal tract, oral cavity, and vagina, as well as various fermented foods such as fermented milk or yogurt. The species most readily grows at low pH levels, and has an optimum growth temperature of 37 °C. Certain strains of L. acidophilus show strong probiotic effects, and are commercially used in dairy production. The genome of L. acidophilus has been sequenced.

Lactiplantibacillus plantarum is a widespread member of the genus Lactiplantibacillus and commonly found in many fermented food products as well as anaerobic plant matter. L. plantarum was first isolated from saliva. Based on its ability to temporarily persist in plants, the insect intestine and in the intestinal tract of vertebrate animals, it was designated as a nomadic organism. L. plantarum is Gram positive, bacilli shaped bacterium. L. plantarum cells are rods with rounded ends, straight, generally 0.9–1.2 μm wide and 3–8 μm long, occurring singly, in pairs or in short chains. L. plantarum has one of the largest genomes known among the lactic acid bacteria and is a very flexible and versatile species. It is estimated to grow between pH 3.4 and 8.8. Lactiplantibacillus plantarum can grow in the temperature range 12 °C to 40 °C. The viable counts of the "L. plantarum" stored at refrigerated condition (4 °C) remained high, while a considerable reduction in the counts was observed stored at room temperature.

<span class="mw-page-title-main">Minoru Shirota</span> Japanese microbiologist

Minoru Shirota was a Japanese microbiologist. In the 1930 Shirota identified a strain of lactic acid bacteria that is part of normal gut flora that he originally called Lactobacillus casei Shirota, which appeared to help contain the growth of harmful bacteria in the gut. The strain was later reclassified as Lactobacillus paracasei Shirota.

<i>Lacticaseibacillus casei</i> Species of bacterium

Lacticaseibacillus casei is an organism that belongs to the largest genus in the family Lactobacillaceae, a lactic acid bacteria (LAB), that was previously classified as Lactobacillus casei. This bacteria has been identified as facultatively anaerobic or microaerophilic, acid-tolerant, non-spore-forming bacteria.

<span class="mw-page-title-main">Actimel</span> Probiotic yoghurt drink

Actimel is a probiotic yogurt-type drink produced by the French company Danone.

<i>Bifidobacterium animalis</i> Species of bacterium

Bifidobacterium animalis is a gram-positive, anaerobic, rod-shaped bacterium of the Bifidobacterium genus which can be found in the large intestines of most mammals, including humans.

Limosilactobacillus reuteri is a lactic acid bacterium found in a variety of natural environments, including the gastrointestinal tract of humans and other animals. It does not appear to be pathogenic and may have health effects.

<i>Streptococcus thermophilus</i> Species of bacterium

Streptococcus thermophilus formerly known as Streptococcus salivarius subsp. thermophilus is a gram-positive bacterium, and a fermentative facultative anaerobe, of the viridans group. It tests negative for cytochrome, oxidase, and catalase, and positive for alpha-hemolytic activity. It is non-motile and does not form endospores. S. thermophilus is fimbriated.

A prokinetic agent is a type of small peptide drug which enhances gastrointestinal motility by increasing the frequency or strength of contractions, but without disrupting their rhythm. They are used to treat certain gastrointestinal symptoms, including abdominal discomfort, bloating, constipation, heart burn, nausea, and vomiting; and certain gastrointestinal disorders, including irritable bowel syndrome, gastritis, gastroparesis, and functional dyspepsia.

<i>Pediococcus acidilactici</i> Species of bacterium

Pediococcus acidilactici is a species of Gram-positive cocci that is often found in pairs or tetrads. P. acidilactici is a homofermentative bacterium that can grow in a wide range of pH, temperature, and osmotic pressure, therefore being able to colonize the digestive tract. It has emerged as a potential probiotic that has shown promising results in animal and human experiments, though some of the results are limited. They are commonly found in fermented vegetables, fermented dairy products, and meat.

Probiotics are live microorganisms promoted with claims that they provide health benefits when consumed, generally by improving or restoring the gut flora. Probiotics are considered generally safe to consume, but may cause bacteria-host interactions and unwanted side effects in rare cases. There is little evidence that probiotics bring the health benefits claimed for them.

BioGaia is a Swedish biotechnology company that develops, markets and sells a range of probiotic products. It has patented the use of several Lactobacillus reuteri strains and offers gut and immune health products containing L. reuteri Protectis, one of the human L. reuteri strain and oral health products containing L. reuteri Prodentis, a blend of the L. reuteri strains DSM 17938 and ATCC PTA 5289. Products containing L. reuteri have been proven to be both effective and safe in several applications: infant colic, diarrhea prevention and mitigation in children, eradication of H. pylori infection and reduction of side effects from standard H. pylori treatment, amelioration of gingivitis, and general illness prevention in children and adults. BioGaia was ranked 9th in the Top 30 Global Probiotic Food Ingredient Companies list by FoodTalks in 2021. The BioGaia -B share is listed on the NASDAQ OMX Nordic Exchange.

<i>Lacticaseibacillus paracasei</i> Species of bacterium

Lacticaseibacillus paracasei (commonly abbreviated as Lc. paracasei) is a gram-positive, homofermentative species of lactic acid bacteria that are commonly used in dairy product fermentation and as probiotic cultures. Lc. paracasei is a bacterium that operates by commensalism. It is commonly found in many human habitats such as human intestinal tracts and mouths as well as sewages, silages, and previously mentioned dairy products. The name includes morphology, a rod-shaped bacterium with a width of 2.0 to 4.0μm and length of 0.8 to 1.0μm.

Ligilactobacillus salivarius is a probiotic bacteria species that has been found to live in the gastrointestinal tract and exert a range of therapeutic properties including suppression of pathogenic bacteria.

<i>Lactobacillus bulgaricus</i> GLB44 Subspecies of bacterium

Lactobacillus delbrueckii subsp. bulgaricus is a bacterial subspecies traditionally isolated from European yogurts. Lactobacillus bulgaricusGLB44 differs from other L. bulgaricus strains because it was isolated from the leaves of Galanthus nivalis in Bulgaria.

Bifidobacterium breve is a bacterial species of the genus Bifidobacterium which has probiotic properties. Bifidobacteria are a type of bacteria that live symbiotically in the intestines of humans. They have been used to treat a number of conditions including constipation, diarrhea, irritable bowel syndrome and even the cold and flu. Some of these uses have been backed up by scientific research, but others have not. B. breve is a gram positive, anaerobic, rod shaped organism that is non motile and forms branches with its neighbors.

Ursula Wiedermann is an Austrian medical scientist who has made significant contributions in the field of allergies and of cancer immunotherapy. She is currently Professor of Vaccinology at the Medical University of Vienna. Wiedermann's work in the field of B cell peptide vaccines led to the creation of HER-Vaxx, an immunotherapy for the treatment of HER-2-positive cancers. This vaccine is currently being taken into mid-stage clinical development in gastric cancer by the biotech company Imugene, where Wiedermann is Chief Scientific Officer.

Psychobiotics is a term used in preliminary research to refer to live bacteria that, when ingested in appropriate amounts, might confer a mental health benefit by affecting microbiota of the host organism. Whether bacteria might play a role in the gut-brain axis is under research. A 2020 literature review suggests that the consumption of psychobiotics could be considered as a viable option to restore mental health although lacking randomized controlled trials on clear mental health outcomes in humans.

References

  1. Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, Mata-Haro V, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A (2018). "Postbiotics: An evolving term within the functional foods field". Trends Food Sci Technol. 75: 105–114. doi:10.1016/j.tifs.2018.03.009.
  2. Popovic, N., et al, The Influence of Heat-Killed Enterococcus faecium BGPAS1-3 on the Tight Junction Protein Expression and Immune Function in Differentiated Caco-2 Cells Infected With Listeria monocytogenes ATCC 19111. Front Microbiol 2019, 10 pages412
  3. 1 2 Zorzela, L., et al., Is there a role for modified probiotics as beneficial microbes: a systematic review of the literature. Benef Microbes, 2017. 8(5): p. 739-754.
  4. Maruyama, M., et al., The effects of non-viable Lactobacillus on immune function in the elderly: a randomised, double-blind, placebo-controlled study. Int J Food Sci Nutr, 2016. 67(1): p. 67-73.
  5. Deshpande, G., G. Athalye-Jape, and S. Patole, Para-probiotics for Preterm Neonates-The Next Frontier. Nutrients, 2018. 10(7).
  6. 1 2 3 4 5 Pique, N., M. Berlanga, and D. Minana-Galbis, Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int J Mol Sci, 2019. 20(10).
  7. 1 2 Berni Canani, R., et al., Specific Signatures of the Gut Microbiota and Increased Levels of Butyrate in Children Treated with Fermented Cow's Milk Containing Heat-Killed Lactobacillus paracasei CBA L74. Appl Environ Microbiol, 2017. 83(19)
  8. 1 2 Arai, S., et al., Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigen-specific IgA secretion and induces follicular helper T cells in mice. PLoS One, 2018. 13(6): p. e0199018.
  9. 1 2 3 Komano, Y., et al., Efficacy of heat-killed Lactococcus lactis JCM 5805 on immunity and fatigue during consecutive high intensity exercise in male athletes: a randomized, placebo-controlled, double-blinded trial. J Int Soc Sports Nutr, 2018. 15(1): p. 39.
  10. 1 2 Lee, A., et al., Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity. Nutrients, 2017. 9(6).
  11. 1 2 Jang, H.J., et al., Antioxidant effects of live and heat-killed probiotic Lactobacillus plantarum Ln1 isolated from kimchi. J Food Sci Technol, 2018. 55(8): p. 3174-3180.
  12. Morita, Y., et al., Effect of Heat-Killed Lactobacillus paracasei KW3110 Ingestion on Ocular Disorders Caused by Visual Display Terminal (VDT) Loads: A Randomized, Double-Blind, Placebo-Controlled Parallel-Group Study. Nutrients, 2018. 10(8).
  13. 1 2 Liu, Y.W., et al., Oral administration of heat-inactivated Lactobacillus plantarum K37 modulated airway hyperresponsiveness in ovalbumin-sensitized BALB/c mice. PLoS One, 2014. 9(6): p. e100105.
  14. 1 2 3 4 5 6 7 8 9 Sang, L.X., et al., Live and heat-killed probiotic: effects on chronic experimental colitis induced by dextran sulfate sodium (DSS) in rats. Int J Clin Exp Med, 2015. 8(11): p. 20072-8.
  15. 1 2 3 4 5 6 7 8 9 Sang, L.X., et al., Heat-killed VSL#3 ameliorates dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Int J Mol Sci, 2013. 15(1): p. 15-28.
  16. 1 2 Chung, I.C., et al., Pretreatment with a Heat-Killed Probiotic Modulates the NLRP3 Inflammasome and Attenuates Colitis-Associated Colorectal Cancer in Mice. Nutrients, 2019. 11(3).
  17. 1 2 Gao, X., et al., Effect of heat-killed Streptococcus thermophilus on type 2 diabetes rats. PeerJ, 2019. 7: p. e7117.
  18. 1 2 3 Chuang, C.H., et al., Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo. Molecules, 2016. 21(11).
  19. Chen, X., et al., Hepatoprotective Effects of Lactobacillus on Carbon Tetrachloride-Induced Acute Liver Injury in Mice. Int J Mol Sci, 2018. 19(8).
  20. 1 2 3 Choi, C.Y., et al., Anti-inflammatory potential of a heat-killed Lactobacillus strain isolated from Kimchi on house dust mite-induced atopic dermatitis in NC/Nga mice. J Appl Microbiol, 2017. 123(2): p. 535-543.
  21. 1 2 Park, S., et al., Effects of heat-killed Lactobacillus plantarum against influenza viruses in mice. J Microbiol, 2018. 56(2): p. 145-149.
  22. Jung, Y.J., et al., Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Sci Rep, 2017. 7(1): p. 17360.
  23. Kiso, M., et al., Protective efficacy of orally administered, heat-killed Lactobacillus pentosus b240 against influenza A virus. Sci Rep, 2013. 3: p. 1563.
  24. 1 2 Liao, P.H., et al., Heat-killed Lactobacillus Reuteri GMNL-263 Prevents Epididymal Fat Accumulation and Cardiac Injury in High-Calorie Diet-Fed Rats. Int J Med Sci, 2016. 13(8): p. 569-77.
  25. Saito, H., et al., Oral administration of heat-killed Lactobacillus brevis SBC8803 elevates the ratio of acyl/des-acyl ghrelin in blood and increases short-term food intake. Benef Microbes, 2019: p. 1-8.
  26. Saito, Y., et al., Effects of heat-killed Lactobacillus casei subsp. casei 327 intake on defecation in healthy volunteers: a randomized, double-blind, placebo-controlled, parallel-group study. Biosci Microbiota Food Health, 2018. 37(3): p. 59-65.
  27. 1 2 Warda, A.K., et al., Heat-killed lactobacilli alter both microbiota composition and behaviour. Behav Brain Res, 2019. 362: p. 213-223.
  28. Ting, W.J., et al., Heat Killed Lactobacillus reuteri GMNL-263 Reduces Fibrosis Effects on the Liver and Heart in High Fat Diet-Hamsters via TGF-beta Suppression. Int J Mol Sci, 2015. 16(10): p. 25881-96.