Preparata code

Last updated

In coding theory, the Preparata codes form a class of non-linear double-error-correcting codes. They are named after Franco P. Preparata who first described them in 1968.

Contents

Although non-linear over GF(2) the Preparata codes are linear over Z4 with the Lee distance.

Construction

Let m be an odd number, and . We first describe the extended Preparata code of length : the Preparata code is then derived by deleting one position. The words of the extended code are regarded as pairs (X, Y) of 2m-tuples, each corresponding to subsets of the finite field GF(2m) in some fixed way.

The extended code contains the words (X, Y) satisfying three conditions

  1. X, Y each have even weight;

The Preparata code is obtained by deleting the position in X corresponding to 0 in GF(2m).

Properties

The Preparata code is of length 2m+1  1, size 2k where k = 2m + 1  2m  2, and minimum distance 5.

When m = 3, the Preparata code of length 15 is also called the Nordstrom–Robinson code.

Related Research Articles

<span class="mw-page-title-main">Hamming code</span> Family of linear error-correcting codes

In computer science and telecommunication, Hamming codes are a family of linear error-correcting codes. Hamming codes can detect one-bit and two-bit errors, or correct one-bit errors without detection of uncorrected errors. By contrast, the simple parity code cannot correct errors, and can detect only an odd number of bits in error. Hamming codes are perfect codes, that is, they achieve the highest possible rate for codes with their block length and minimum distance of three. Richard W. Hamming invented Hamming codes in 1950 as a way of automatically correcting errors introduced by punched card readers. In his original paper, Hamming elaborated his general idea, but specifically focused on the Hamming(7,4) code which adds three parity bits to four bits of data.

<span class="mw-page-title-main">Hamming distance</span> Number of bits that differ between two strings

In information theory, the Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or the minimum number of errors that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences. It is named after the American mathematician Richard Hamming.

Reed–Solomon codes are a group of error-correcting codes that were introduced by Irving S. Reed and Gustave Solomon in 1960. They have many applications, the most prominent of which include consumer technologies such as MiniDiscs, CDs, DVDs, Blu-ray discs, QR codes, data transmission technologies such as DSL and WiMAX, broadcast systems such as satellite communications, DVB and ATSC, and storage systems such as RAID 6.

<span class="mw-page-title-main">Coding theory</span> Study of the properties of codes and their fitness

Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studied by various scientific disciplines—such as information theory, electrical engineering, mathematics, linguistics, and computer science—for the purpose of designing efficient and reliable data transmission methods. This typically involves the removal of redundancy and the correction or detection of errors in the transmitted data.

<span class="mw-page-title-main">Binary Golay code</span> Type of linear error-correcting code

In mathematics and electronics engineering, a binary Golay code is a type of linear error-correcting code used in digital communications. The binary Golay code, along with the ternary Golay code, has a particularly deep and interesting connection to the theory of finite sporadic groups in mathematics. These codes are named in honor of Marcel J. E. Golay whose 1949 paper introducing them has been called, by E. R. Berlekamp, the "best single published page" in coding theory.

In coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way. Such limitations often take the form of bounds that relate different parameters of the block code to each other, such as its rate and its ability to detect and correct errors.

In coding theory, the weight enumerator polynomial of a binary linear code specifies the number of words of each possible Hamming weight.

In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although turbo codes can be seen as a hybrid of these two types. Linear codes allow for more efficient encoding and decoding algorithms than other codes.

In coding theory, the Singleton bound, named after Richard Collom Singleton, is a relatively crude upper bound on the size of an arbitrary block code with block length , size and minimum distance . It is also known as the Joshibound. proved by Joshi (1958) and even earlier by Komamiya (1953).

In coding theory, decoding is the process of translating received messages into codewords of a given code. There have been many common methods of mapping messages to codewords. These are often used to recover messages sent over a noisy channel, such as a binary symmetric channel.

Reed–Muller codes are error-correcting codes that are used in wireless communications applications, particularly in deep-space communication. Moreover, the proposed 5G standard relies on the closely related polar codes for error correction in the control channel. Due to their favorable theoretical and mathematical properties, Reed–Muller codes have also been extensively studied in theoretical computer science.

In coding theory, the ternary Golay codes are two closely related error-correcting codes. The code generally known simply as the ternary Golay code is an -code, that is, it is a linear code over a ternary alphabet; the relative distance of the code is as large as it possibly can be for a ternary code, and hence, the ternary Golay code is a perfect code. The extended ternary Golay code is a [12, 6, 6] linear code obtained by adding a zero-sum check digit to the [11, 6, 5] code. In finite group theory, the extended ternary Golay code is sometimes referred to as the ternary Golay code.

<span class="mw-page-title-main">Hamming space</span>

In statistics and coding theory, a Hamming space is usually the set of all binary strings of length N. It is used in the theory of coding signals and transmission.

<span class="mw-page-title-main">Cyclic code</span> Type of block code

In coding theory, a cyclic code is a block code, where the circular shifts of each codeword gives another word that belongs to the code. They are error-correcting codes that have algebraic properties that are convenient for efficient error detection and correction.

<span class="mw-page-title-main">Hadamard code</span> Error-correcting code

The Hadamard code is an error-correcting code named after Jacques Hadamard that is used for error detection and correction when transmitting messages over very noisy or unreliable channels. In 1971, the code was used to transmit photos of Mars back to Earth from the NASA space probe Mariner 9. Because of its unique mathematical properties, the Hadamard code is not only used by engineers, but also intensely studied in coding theory, mathematics, and theoretical computer science. The Hadamard code is also known under the names Walsh code, Walsh family, and Walsh–Hadamard code in recognition of the American mathematician Joseph Leonard Walsh.

In coding theory, list decoding is an alternative to unique decoding of error-correcting codes for large error rates. The notion was proposed by Elias in the 1950s. The main idea behind list decoding is that the decoding algorithm instead of outputting a single possible message outputs a list of possibilities one of which is correct. This allows for handling a greater number of errors than that allowed by unique decoding.

In coding theory, a polynomial code is a type of linear code whose set of valid code words consists of those polynomials that are divisible by a given fixed polynomial.

In coding theory, the Lee distance is a distance between two strings and of equal length n over the q-ary alphabet {0, 1, …, q − 1} of size q ≥ 2. It is a metric defined as

<span class="mw-page-title-main">Expander code</span>

In coding theory, expander codes form a class of error-correcting codes that are constructed from bipartite expander graphs. Along with Justesen codes, expander codes are of particular interest since they have a constant positive rate, a constant positive relative distance, and a constant alphabet size. In fact, the alphabet contains only two elements, so expander codes belong to the class of binary codes. Furthermore, expander codes can be both encoded and decoded in time proportional to the block length of the code.

In coding theory, rank codes (also called Gabidulin codes) are non-binary linear error-correcting codes over not Hamming but rank metric. They described a systematic way of building codes that could detect and correct multiple random rank errors. By adding redundancy with coding k-symbol word to a n-symbol word, a rank code can correct any errors of rank up to t = ⌊ (d − 1) / 2 ⌋, where d is a code distance. As an erasure code, it can correct up to d − 1 known erasures.

References