Prismatic compound of antiprisms with rotational freedom

Last updated
Compound of 2np/q-gonal antiprisms
UC22-2k n-m-gonal antiprisms.png (n=2, p=3, q=1) UC24-2k n-m-gonal antiprisms.png (n=1, p=7, q=2)
Type Uniform compound
Index
  • q odd: UC22
  • q even: UC24
Polyhedra2np/q-gonal antiprisms
Faces4n {p/q} (unless p/q=2), 4np triangles
Edges8np
Vertices4np
Symmetry group
Subgroup restricting to one constituent

Each member of this infinite family of uniform polyhedron compounds is a symmetric arrangement of antiprisms sharing a common axis of rotational symmetry. It arises from superimposing two copies of the corresponding prismatic compound of antiprisms (without rotational freedom), and rotating each copy by an equal and opposite angle.

This infinite family can be enumerated as follows:

Where p/q=2 the component is a tetrahedron, sometimes not considered a true antiprism.

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">Prism (geometry)</span> Solid with 2 parallel n-gonal bases connected by n parallelograms

In geometry, a prism is a polyhedron comprising an n-sided polygon base, a second base which is a translated copy of the first, and n other faces, necessarily all parallelograms, joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids.

<span class="mw-page-title-main">Trapezohedron</span> Polyhedron made of congruent kites arranged radially

In geometry, an n-gonaltrapezohedron, n-trapezohedron, n-antidipyramid, n-antibipyramid, or n-deltohedron, is the dual polyhedron of an n-gonal antiprism. The 2n faces of an n-trapezohedron are congruent and symmetrically staggered; they are called twisted kites. With a higher symmetry, its 2n faces are kites.

<span class="mw-page-title-main">Uniform 4-polytope</span> Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular, quasi-regular, or semi-regular. The faces and vertices don't need to be convex, so many of the uniform polyhedra are also star polyhedra.

<span class="mw-page-title-main">Alternation (geometry)</span> Removal of alternate vertices

In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the same must also be true within each lower-dimensional face of the polytope. In two dimensions a stronger definition is used: only the regular polygons are considered as uniform, disallowing polygons that alternate between two different lengths of edges.

In geometry, a uniform polyhedron compound is a polyhedral compound whose constituents are identical uniform polyhedra, in an arrangement that is also uniform, i.e. the symmetry group of the compound acts transitively on the compound's vertices.

<span class="mw-page-title-main">Prismatic uniform polyhedron</span> Uniform polyhedron with dihedral symmetry

In geometry, a prismatic uniform polyhedron is a uniform polyhedron with dihedral symmetry. They exist in two infinite families, the uniform prisms and the uniform antiprisms. All have their vertices in parallel planes and are therefore prismatoids.

<span class="mw-page-title-main">Uniform 5-polytope</span> Five-dimensional geometric shape

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

<span class="mw-page-title-main">Prismatic compound of prisms</span> Polyhedral compound

Each member of this infinite family of uniform polyhedron compounds is a symmetric arrangement of prisms sharing a common axis of rotational symmetry.

<span class="mw-page-title-main">Prismatic compound of antiprisms</span> Polyhedral compound

In geometry, a prismatic compound of antiprism is a category of uniform polyhedron compound. Each member of this infinite family of uniform polyhedron compounds is a symmetric arrangement of antiprisms sharing a common axis of rotational symmetry.

<span class="mw-page-title-main">Prismatic compound of prisms with rotational freedom</span> Polyhedral compound

Each member of this infinite family of uniform polyhedron compounds is a symmetric arrangement of prisms sharing a common axis of rotational symmetry. It arises from superimposing two copies of the corresponding prismatic compound of prisms, and rotating each copy by an equal and opposite angle.

<span class="mw-page-title-main">Compound of six tetrahedra with rotational freedom</span> Polyhedral compound

The compound of six tetrahedra with rotational freedom is a uniform polyhedron compound made of a symmetric arrangement of 6 tetrahedra, considered as antiprisms. It can be constructed by superimposing six tetrahedra within a cube, and then rotating them in pairs about the three axes that pass through the centres of two opposite cubic faces. Each tetrahedron is rotated by an equal angle θ. Equivalently, a tetrahedron may be inscribed within each cube in the compound of six cubes with rotational freedom, in such a way as to preserve tetrahedral symmetry.

<span class="mw-page-title-main">Compound of four octahedra with rotational freedom</span> Polyhedral compound

The compound of four octahedra with rotational freedom is a uniform polyhedron compound. It consists in a symmetric arrangement of 4 octahedra, considered as triangular antiprisms. It can be constructed by superimposing four identical octahedra, and then rotating each by an equal angle θ about a separate axis passing through the centres of two opposite octahedral faces, in such a way as to preserve pyritohedral symmetry.

<span class="mw-page-title-main">Compound of twelve pentagonal antiprisms with rotational freedom</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 12 pentagonal antiprisms. It can be constructed by inscribing one pair of pentagonal antiprisms within an icosahedron, in each of the six possible ways, and then rotating each by an equal and opposite angle θ.

<span class="mw-page-title-main">Compound of four tetrahedra</span> Polyhedral compound

In geometry, a compound of four tetrahedra can be constructed by four tetrahedra in a number of different symmetry positions.

<span class="mw-page-title-main">Prismatic uniform 4-polytope</span> Type of uniform 4-polytope in four-dimensional geography

In four-dimensional geometry, a prismatic uniform 4-polytope is a uniform 4-polytope with a nonconnected Coxeter diagram symmetry group. These figures are analogous to the set of prisms and antiprism uniform polyhedra, but add a third category called duoprisms, constructed as a product of two regular polygons.

References