Probabilistic encryption

Last updated

Probabilistic encryption is the use of randomness in an encryption algorithm, so that when encrypting the same message several times it will, in general, yield different ciphertexts. The term "probabilistic encryption" is typically used in reference to public key encryption algorithms; however various symmetric key encryption algorithms achieve a similar property (e.g., block ciphers when used in a chaining mode such as CBC), and stream ciphers such as Freestyle [1] which are inherently random. To be semantically secure, that is, to hide even partial information about the plaintext, an encryption algorithm must be probabilistic.

Contents

History

The first provably-secure probabilistic public-key encryption scheme was proposed by Shafi Goldwasser and Silvio Micali, based on the hardness of the quadratic residuosity problem and had a message expansion factor equal to the public key size. More efficient probabilistic encryption algorithms include Elgamal, Paillier, and various constructions under the random oracle model, including OAEP.

Security

Probabilistic encryption is particularly important when using public key cryptography. Suppose that the adversary observes a ciphertext, and suspects that the plaintext is either "YES" or "NO", or has a hunch that the plaintext might be "ATTACK AT CALAIS". When a deterministic encryption algorithm is used, the adversary can simply try encrypting each of his guesses under the recipient's public key, and compare each result to the target ciphertext. To combat this attack, public key encryption schemes must incorporate an element of randomness, ensuring that each plaintext maps into one of a large number of possible ciphertexts.

An intuitive approach to converting a deterministic encryption scheme into a probabilistic one is to simply pad the plaintext with a random string before encrypting with the deterministic algorithm. Conversely, decryption involves applying a deterministic algorithm and ignoring the random padding. However, early schemes which applied this naive approach were broken due to limitations in some deterministic encryption schemes. Techniques such as Optimal Asymmetric Encryption Padding (OAEP) integrate random padding in a manner that is secure using any trapdoor permutation.

Examples

Example of probabilistic encryption using any trapdoor permutation:

This is inefficient because only a single bit is encrypted. In other words, the message expansion factor is equal to the public key size.

Example of probabilistic encryption in the random oracle model:

See also

Related Research Articles

In cryptography, a block cipher is a deterministic algorithm operating on fixed-length groups of bits, called blocks. It uses an unvarying transformation, that is, it uses a symmetric key. They are specified elementary components in the design of many cryptographic protocols and are widely used to implement the encryption of large amounts of data, including data exchange protocols.

RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem that is widely used for secure data transmission. It is also one of the oldest. The acronym RSA comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly described the algorithm in 1977. An equivalent system was developed secretly, in 1973 at GCHQ, by the English mathematician Clifford Cocks. That system was declassified in 1997.

In cryptography, the ElGamal encryption system is an asymmetric key encryption algorithm for public-key cryptography which is based on the Diffie–Hellman key exchange. It was described by Taher Elgamal in 1985. ElGamal encryption is used in the free GNU Privacy Guard software, recent versions of PGP, and other cryptosystems. The Digital Signature Algorithm (DSA) is a variant of the ElGamal signature scheme, which should not be confused with ElGamal encryption.

Malleability is a property of some cryptographic algorithms. An encryption algorithm is "malleable" if it is possible to transform a ciphertext into another ciphertext which decrypts to a related plaintext. That is, given an encryption of a plaintext , it is possible to generate another ciphertext which decrypts to , for a known function , without necessarily knowing or learning .

In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to provide information security such as confidentiality or authenticity. A block cipher by itself is only suitable for the secure cryptographic transformation of one fixed-length group of bits called a block. A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block.

In cryptography, a Feistel cipher is a symmetric structure used in the construction of block ciphers, named after the German-born physicist and cryptographer Horst Feistel who did pioneering research while working for IBM (USA); it is also commonly known as a Feistel network. A large proportion of block ciphers use the scheme, including the US Data Encryption Standard, the Soviet/Russian GOST and the more recent Blowfish and Twofish ciphers. In a Feistel cipher, encryption and decryption are very similar operations, and both consist of iteratively running a function called a "round function" a fixed number of times.

The Rabin cryptosystem is an asymmetric cryptographic technique, whose security, like that of RSA, is related to the difficulty of integer factorization. However the Rabin cryptosystem has the advantage that it has been mathematically proven to be computationally secure against a chosen-plaintext attack as long as the attacker cannot efficiently factor integers, while there is no such proof known for RSA. It has the disadvantage that each output of the Rabin function can be generated by any of four possible inputs; if each output is a ciphertext, extra complexity is required on decryption to identify which of the four possible inputs was the true plaintext.

The Paillier cryptosystem, invented by and named after Pascal Paillier in 1999, is a probabilistic asymmetric algorithm for public key cryptography. The problem of computing n-th residue classes is believed to be computationally difficult. The decisional composite residuosity assumption is the intractability hypothesis upon which this cryptosystem is based.

In cryptography, padding is any of a number of distinct practices which all include adding data to the beginning, middle, or end of a message prior to encryption. In classical cryptography, padding may include adding nonsense phrases to a message to obscure the fact that many messages end in predictable ways, e.g. sincerely yours.

In cryptography, a semantically secure cryptosystem is one where only negligible information about the plaintext can be feasibly extracted from the ciphertext. Specifically, any probabilistic, polynomial-time algorithm (PPTA) that is given the ciphertext of a certain message , and the message's length, cannot determine any partial information on the message with probability non-negligibly higher than all other PPTA's that only have access to the message length. This concept is the computational complexity analogue to Shannon's concept of perfect secrecy. Perfect secrecy means that the ciphertext reveals no information at all about the plaintext, whereas semantic security implies that any information revealed cannot be feasibly extracted.

The Cramer–Shoup system is an asymmetric key encryption algorithm, and was the first efficient scheme proven to be secure against adaptive chosen ciphertext attack using standard cryptographic assumptions. Its security is based on the computational intractability of the decisional Diffie–Hellman assumption. Developed by Ronald Cramer and Victor Shoup in 1998, it is an extension of the ElGamal cryptosystem. In contrast to ElGamal, which is extremely malleable, Cramer–Shoup adds other elements to ensure non-malleability even against a resourceful attacker. This non-malleability is achieved through the use of a universal one-way hash function and additional computations, resulting in a ciphertext which is twice as large as in ElGamal.

In cryptography, Optimal Asymmetric Encryption Padding (OAEP) is a padding scheme often used together with RSA encryption. OAEP was introduced by Bellare and Rogaway, and subsequently standardized in PKCS#1 v2 and RFC 2437.

Ciphertext indistinguishability is a property of many encryption schemes. Intuitively, if a cryptosystem possesses the property of indistinguishability, then an adversary will be unable to distinguish pairs of ciphertexts based on the message they encrypt. The property of indistinguishability under chosen plaintext attack is considered a basic requirement for most provably secure public key cryptosystems, though some schemes also provide indistinguishability under chosen ciphertext attack and adaptive chosen ciphertext attack. Indistinguishability under chosen plaintext attack is equivalent to the property of semantic security, and many cryptographic proofs use these definitions interchangeably.

A deterministic encryption scheme is a cryptosystem which always produces the same ciphertext for a given plaintext and key, even over separate executions of the encryption algorithm. Examples of deterministic encryption algorithms include RSA cryptosystem, and many block ciphers when used in ECB mode or with a constant initialization vector.

The Goldwasser–Micali (GM) cryptosystem is an asymmetric key encryption algorithm developed by Shafi Goldwasser and Silvio Micali in 1982. GM has the distinction of being the first probabilistic public-key encryption scheme which is provably secure under standard cryptographic assumptions. However, it is not an efficient cryptosystem, as ciphertexts may be several hundred times larger than the initial plaintext. To prove the security properties of the cryptosystem, Goldwasser and Micali proposed the widely used definition of semantic security.

The Blum–Goldwasser (BG) cryptosystem is an asymmetric key encryption algorithm proposed by Manuel Blum and Shafi Goldwasser in 1984. Blum–Goldwasser is a probabilistic, semantically secure cryptosystem with a constant-size ciphertext expansion. The encryption algorithm implements an XOR-based stream cipher using the Blum-Blum-Shub (BBS) pseudo-random number generator to generate the keystream. Decryption is accomplished by manipulating the final state of the BBS generator using the private key, in order to find the initial seed and reconstruct the keystream.

Disk encryption is a special case of data at rest protection when the storage medium is a sector-addressable device. This article presents cryptographic aspects of the problem. For an overview, see disk encryption. For discussion of different software packages and hardware devices devoted to this problem, see disk encryption software and disk encryption hardware.

Plaintext-awareness is a notion of security for public-key encryption. A cryptosystem is plaintext-aware if it is difficult for any efficient algorithm to come up with a valid ciphertext without being aware of the corresponding plaintext.

In cryptography, a padding oracle attack is an attack which uses the padding validation of a cryptographic message to decrypt the ciphertext. In cryptography, variable-length plaintext messages often have to be padded (expanded) to be compatible with the underlying cryptographic primitive. The attack relies on having a "padding oracle" who freely responds to queries about whether a message is correctly padded or not. Padding oracle attacks are mostly associated with CBC mode decryption used within block ciphers. Padding modes for asymmetric algorithms such as OAEP may also be vulnerable to padding oracle attacks.

Coppersmith's attack describes a class of cryptographic attacks on the public-key cryptosystem RSA based on the Coppersmith method. Particular applications of the Coppersmith method for attacking RSA include cases when the public exponent e is small or when partial knowledge of the secret key is available.

References

  1. Puthuparambil, Arun Babu; Thomas, Jithin Jose (2019-12-01). "Freestyle, a randomized version of ChaCha for resisting offline brute-force and dictionary attacks". Journal of Information Security and Applications. 49: 102396. arXiv: 1802.03201 . doi:10.1016/j.jisa.2019.102396. ISSN   2214-2126.