Productivity model

Last updated

Productivity in economics is usually measured as the ratio of what is produced (an aggregate output) to what is used in producing it (an aggregate input). [1] Productivity is closely related to the measure of production efficiency. A productivity model is a measurement method which is used in practice for measuring productivity. A productivity model must be able to compute Output / Input when there are many different outputs and inputs.

Contents

Comparison of the productivity models

The principle of comparing productivity models is to identify the characteristics that are present in the models and to understand their differences. This task is alleviated by the fact that such characteristics can unmistakably be identified by their measurement formula. Bases on the model comparison, it is possible to identify the models that are suited for measuring productivity. A criterion of this solution is the production theory and the production function. It is essential that the model is able to describe the production function.

Dimensions of productivity model comparisons (Saari 2006b) Model comparison.png
Dimensions of productivity model comparisons (Saari 2006b)

The principle of model comparison becomes evident in the figure. There are two dimensions in the comparison. Horizontal model comparison refers to a comparison between business models. Vertical model comparison refers to a comparison between economic levels of activity or between the levels of business, industry and national economy.

At all three levels of economy, that is, that of business, industry and national economy, a uniform understanding prevails of the phenomenon of productivity and of how it should be modelled and measured. The comparison reveals some differences that can mainly be seen to result from differences in measuring accuracy. It has been possible to develop the productivity model of business so as to be more accurate than that of national economy for the simple reason that in business the measuring data are much more accurate. (Saari 2006b)

Business models

There are several different models available for measuring productivity. Comparing the models systematically has proved most problematic. In terms of pure mathematics it has not been possible to establish the different and similar characteristics of them so as to be able to understand each model as such and in relation to another model. This kind of comparison is possible using the productivity model which is a model with adjustable characteristics. An adjustable model can be set with the characteristics of the model under review after which both differences and similarities are identifiable.

A characteristic of the productivity measurement models that surpasses all the others is the ability to describe the production function. If the model can describe the production function, it is applicable to total productivity measurements. On the other hand, if it cannot describe the production function or if it can do so only partly, the model is not suitable for its task. The productivity models based on the production function form rather a coherent entity in which differences in models are fairly small. The differences play an insignificant role, and the solutions that are optional can be recommended for good reasons. Productivity measurement models can differ in characteristics from another in six ways.

  1. First, it is necessary to examine and clarify the differences in the names of the concepts. Model developers have given different names to the same concepts, causing a lot of confusion. It goes without saying that differences in names do not affect the logic of modelling.
  2. Model variables can differ; hence, the basic logic of the model is different. It is a question of which variables are used for the measurement. The most important characteristic of a model is its ability to describe the production function. This requirement is fulfilled in case the model has the production function variables of productivity and volume. Only the models that meet this criterion are worth a closer comparison. (Saari 2006b)
  3. Calculation order of the variables can differ. Calculation is based on the principle of Ceteris paribus stating that when calculating the impacts of change in one variable all other variables are held constant. The order of calculating the variables has some effect on the calculation results, yet, the difference is not significant.
  4. Theoretical framework of the model can be either cost theory or production theory. In a model based on the production theory, the volume of activity is measured by input volume. In a model based on the cost theory, the volume of activity is measured by output volume.
  5. Accounting technique, i.e. how measurement results are produced, can differ. In calculation, three techniques apply: ratio accounting, variance accounting and accounting form. Differences in the accounting technique do not imply differences in accounting results but differences in clarity and intelligibility. Variance accounting gives the user most possibilities for an analysis.
  6. Adjustability of the model. There are two kinds of models, fixed and adjustable. On an adjustable model, characteristics can be changed, and therefore, they can examine the characteristics of the other models. A fixed model can not be changed. It holds constant the characteristic that the developer has created in it.

Based on the variables used in the productivity model suggested for measuring business, such models can be grouped into three categories as follows:

In 1955, Davis published a book titled Productivity Accounting in which he presented a productivity index model. Based on Davis’ model several versions have been developed, yet, the basic solution is always the same (Kendrick & Creamer 1965, Craig & Harris 1973, Hines 1976, Mundel 1983, Sumanth 1979). The only variable in the index model is productivity, which implies that the model can not be used for describing the production function. Therefore, the model is not introduced in more detail here.

PPPV is the abbreviation for the following variables, profitability being expressed as a function of them:

Profitability = f (Productivity, Prices, Volume)

The model is linked to the profit and loss statement so that profitability is expressed as a function of productivity, volume and unit prices. Productivity and volume are the variables of a production function, and using them makes it is possible to describe the real process. A change in unit prices describes a change of production income distribution.

PPPR is the abbreviation for the following function:

Profitability = f (Productivity, Price Recovery)

In this model, the variables of profitability are productivity and price recovery. Only the productivity is a variable of the production function. The model lacks the variable of volume, and for this reason, the model can not describe the production function. The American models of REALST (Loggerenberg & Cucchiaro 1982, Pineda 1990) and APQC (Kendrick 1984, Brayton 1983, Genesca & Grifell, 1992, Pineda 1990) belong to this category of models but since they do not apply to describing the production function (Saari 2000) they are not reviewed here more closely.

Comparative summary of the models

Summary of productivity models (Saari 2006b) Summary of the PPV models.png
Summary of productivity models (Saari 2006b)

PPPV models measure profitability as a function of productivity, volume and income distribution (unit prices). Such models are

The table presents the characteristics of the PPPV models. All four models use the same variables by which a change in profitability is written into formulas to be used for measurement. These variables are income distribution (prices), productivity and volume. A conclusion is that the basic logic of measurement is the same in all models. The method of implementing the measurements varies to a degree, depending on the fact that the models do not produce similar results from the same calculating material.

Even if the production function variables of profitability and volume were in the model, in practice the calculation can also be carried out in compliance with the cost function. This is the case in models C & T as well as Gollop. Calculating methods differ in the use of either output volume or input volume for measuring the volume of activity. The former solution complies with the cost function and the latter with the production function. It is obvious that the calculation produces different results from the same material. A recommendation is to apply calculation in accordance with the production function. According to the definition of the production function used in the productivity models Saari and Kurosawa, productivity means the quantity and quality of output per one unit of input.

Models differ from one another significantly in their calculation techniques. Differences in calculation technique do not cause differences in calculation results but it is rather a question of differences in clarity and intelligibility between the models. From the comparison it is evident that the models of Courbois & Temple and Kurosawa are purely based on calculation formulas. The calculation is based on the aggregates in the loss and profit account. Consequently, it does not suit to analysis. The productivity model Saari is purely based on variance accounting known from the standard cost accounting. The variance accounting is applied to elementary variables, that is, to quantities and prices of different products and inputs. Variance accounting gives the user most possibilities for analysis. The model of Gollop is a mixed model by its calculation technique. Every variable is calculated using a different calculation technique. (Saari 2006b)

The productivity model Saari is the only model with alterable characteristics. Hence, it is an adjustable model. A comparison between other models has been feasible by exploiting this particular characteristic of this model.

Models of national economy

In order to measure productivity of a nation or an industry, it is necessary to operationalize the same concept of productivity as in business, yet, the object of modelling is substantially wider and the information more aggregate. The calculations of total productivity of a nation or an industry are based on the time series of the SNA, System of National Accounts, formulated and developed for half a century. National accounting is a system based on the recommendations of the UN (SNA 93) to measure total production and total income of a nation and how they are used.

Measurement of productivity is at its most accurate in business because of the availability of all elementary data of the quantities and prices of the inputs and the output in production. The more comprehensive the entity we want to analyse by measurements, the more data need to be aggregated. In productivity measurement, combining and aggregating the data always involves reduced measurement accuracy.

Output measurement

Conceptually speaking, the amount of total production means the same in the national economy and in business but for practical reasons modelling the concept differs, respectively. In national economy, the total production is measured as the sum of value added whereas in business it is measured by the total output value. When the output is calculated by the value added, all purchase inputs (energy, materials etc.) and their productivity impacts are excluded from the examination. Consequently, the production function of national economy is written as follows:

Value Added = Output = f (Capital, Labour)

In business, production is measured by the gross value of production, and in addition to the producer's own inputs (capital and labour) productivity analysis comprises all purchase inputs such as raw-materials, energy, outsourcing services, supplies, components, etc. Accordingly, it is possible to measure the total productivity in business which implies absolute consideration of all inputs. It is clear that productivity measurement in business gives a more accurate result because it analyses all the inputs used in production. (Saari 2006b)

The productivity measurement based on national accounting has been under development recently. The method is known as KLEMS, and it takes all production inputs into consideration. KLEMS is an abbreviation for K = capital, L = labour, E = energy, M = materials, and S = services. In principle, all inputs are treated the same way. As for the capital input in particular this means that it is measured by capital services, not by the capital stock.

Combination or aggregation problem

The problem of aggregating or combining the output and inputs is purely measurement technical, and it is caused by the fixed grouping of the items. In national accounting, data need to be fed under fixed items resulting in large items of output and input which are not homogeneous as provided in the measurements but include qualitative changes. There is no fixed grouping of items in the business production model, neither for inputs nor for products, but both inputs and products are present in calculations by their own names representing the elementary price and quantity of the calculation material. (Saari 2006b)

Problem of the relative prices

For productivity analyses, the value of total production of the national economy, GNP, is calculated with fixed prices. The fixed price calculation principle means that the prices by which quantities are evaluated are held fixed or unchanged for a given period. In the calculation complying with national accounting, a fixed price GNP is obtained by applying the so-called basic year prices. Since the basic year is usually changed every 5th year, the evaluation of the output and input quantities remains unchanged for five years. When the new basic-year prices are introduced, relative prices will change in relation to the prices of the previous basic year, which has its certain impact on productivity

Old basic-year prices entail inaccuracy in the production measurement. For reasons of market economy, relative values of output and inputs alter while the relative prices of the basic year do not react to these changes in any way. Structural changes like this will be wrongly evaluated. Short life-cycle products will not have any basis of evaluation because they are born and they die in between the two basic years. Obtaining good productivity by elasticity is ignored if old and long-term fixed prices are being used. In business models this problem does not exist, because the correct prices are available all the time. (Saari 2006b)

See also

Related Research Articles

<span class="mw-page-title-main">Cost accounting</span> Procedures to optimize practices in cost efficient ways

Cost accounting is defined by the Institute of Management Accountants as "a systematic set of procedures for recording and reporting measurements of the cost of manufacturing goods and performing services in the aggregate and in detail. It includes methods for recognizing,allocating, aggregating and reporting such costs and comparing them with standard costs". Often considered a subset of managerial accounting, its end goal is to advise the management on how to optimize business practices and processes based on cost efficiency and capability. Cost accounting provides the detailed cost information that management needs to control current operations and plan for the future.

Growth accounting is a procedure used in economics to measure the contribution of different factors to economic growth and to indirectly compute the rate of technological progress, measured as a residual, in an economy. Growth accounting decomposes the growth rate of an economy's total output into that which is due to increases in the contributing amount of the factors used—usually the increase in the amount of capital and labor—and that which cannot be accounted for by observable changes in factor utilization. The unexplained part of growth in GDP is then taken to represent increases in productivity or a measure of broadly defined technological progress.

Capital intensity is the amount of fixed or real capital present in relation to other factors of production, especially labor. At the level of either a production process or the aggregate economy, it may be estimated by the capital to labor ratio, such as from the points along a capital/labor isoquant.

In economics, the marginal cost is the change in the total cost that arises when the quantity produced is increased, i.e. the cost of producing additional quantity. In some contexts, it refers to an increment of one unit of output, and in others it refers to the rate of change of total cost as output is increased by an infinitesimal amount. As Figure 1 shows, the marginal cost is measured in dollars per unit, whereas total cost is in dollars, and the marginal cost is the slope of the total cost, the rate at which it increases with output. Marginal cost is different from average cost, which is the total cost divided by the number of units produced.

<span class="mw-page-title-main">Production function</span> Used to define marginal product and to distinguish allocative efficiency

In economics, a production function gives the technological relation between quantities of physical inputs and quantities of output of goods. The production function is one of the key concepts of mainstream neoclassical theories, used to define marginal product and to distinguish allocative efficiency, a key focus of economics. One important purpose of the production function is to address allocative efficiency in the use of factor inputs in production and the resulting distribution of income to those factors, while abstracting away from the technological problems of achieving technical efficiency, as an engineer or professional manager might understand it.

Productivity is the efficiency of production of goods or services expressed by some measure. Measurements of productivity are often expressed as a ratio of an aggregate output to a single input or an aggregate input used in a production process, i.e. output per unit of input, typically over a specific period of time. The most common example is the (aggregate) labour productivity measure, one example of which is GDP per worker. There are many different definitions of productivity and the choice among them depends on the purpose of the productivity measurement and data availability. The key source of difference between various productivity measures is also usually related to how the outputs and the inputs are aggregated to obtain such a ratio-type measure of productivity.

<span class="mw-page-title-main">Aggregate supply</span> Economic concept

In economics, aggregate supply (AS) or domestic final supply (DFS) is the total supply of goods and services that firms in a national economy plan on selling during a specific time period. It is the total amount of goods and services that firms are willing and able to sell at a given price level in an economy. Its natural counterpart is aggregate demand.

The organic composition of capital (OCC) is a concept created by Karl Marx in his theory of capitalism, which was simultaneously his critique of the political economy of his time. It is derived from his more basic concepts of 'value composition of capital' and 'technical composition of capital'. Marx defines the organic composition of capital as "the value-composition of capital, in so far as it is determined by its technical composition and mirrors the changes of the latter". The 'technical composition of capital' measures the relation between the elements of constant capital and variable capital. It is 'technical' because no valuation is here involved. In contrast, the 'value composition of capital' is the ratio between the value of the elements of constant capital involved in production and the value of the labor. Marx found that the special concept of 'organic composition of capital' was sometimes useful in analysis, since it assumes that the relative values of all the elements of capital are constant.

The Solow residual is a number describing empirical productivity growth in an economy from year to year and decade to decade. Robert Solow, the Nobel Memorial Prize in Economic Sciences-winning economist, defined rising productivity as rising output with constant capital and labor input. It is a "residual" because it is the part of growth that is not accounted for by measures of capital accumulation or increased labor input. Increased physical throughput – i.e. environmental resources – is specifically excluded from the calculation; thus some portion of the residual can be ascribed to increased physical throughput. The example used is for the intracapital substitution of aluminium fixtures for steel during which the inputs do not alter. This differs in almost every other economic circumstance in which there are many other variables. The Solow residual is procyclical and measures of it are now called the rate of growth of multifactor productivity or total factor productivity, though Solow (1957) did not use these terms.

In economics, total-factor productivity (TFP), also called multi-factor productivity, is usually measured as the ratio of aggregate output to aggregate inputs. Under some simplifying assumptions about the production technology, growth in TFP becomes the portion of growth in output not explained by growth in traditionally measured inputs of labour and capital used in production. TFP is calculated by dividing output by the weighted geometric average of labour and capital input, with the standard weighting of 0.7 for labour and 0.3 for capital. Total factor productivity is a measure of productive efficiency in that it measures how much output can be produced from a certain amount of inputs. It accounts for part of the differences in cross-country per-capita income. For relatively small percentage changes, the rate of TFP growth can be estimated by subtracting growth rates of labor and capital inputs from the growth rate of output.

The Solow–Swan model or exogenous growth model is an economic model of long-run economic growth. It attempts to explain long-run economic growth by looking at capital accumulation, labor or population growth, and increases in productivity largely driven by technological progress. At its core, it is an aggregate production function, often specified to be of Cobb–Douglas type, which enables the model "to make contact with microeconomics". The model was developed independently by Robert Solow and Trevor Swan in 1956, and superseded the Keynesian Harrod–Domar model.

Net output is an accounting concept used in national accounts such as the United Nations System of National Accounts (UNSNA) and the NIPAs, and sometimes in corporate or government accounts. The concept was originally invented to measure the total net addition to a country's stock of wealth created by production during an accounting interval. The concept of net output is basically "gross revenue from production less the value of goods and services used up in that production". The idea is that if one deducts intermediate expenditures from the annual flow of income generated by production, one obtains a measure of the net new value in the new products created.

Domar aggregation is an approach to aggregating growth measures associated with industries to make larger sector or national aggregate growth rates. The issue comes up in the context of national accounts and multifactor productivity (MFP) statistics.

Programming productivity describes the degree of the ability of individual programmers or development teams to build and evolve software systems. Productivity traditionally refers to the ratio between the quantity of software produced and the cost spent for it. Here the delicacy lies in finding a reasonable way to define software quantity.

Production is the process of combining various inputs, both material and immaterial in order to create output. Ideally this output will be a good or service which has value and contributes to the utility of individuals. The area of economics that focuses on production is called production theory, and it is closely related to the consumption theory of economics.

<span class="mw-page-title-main">Measurement in economics</span>

The measures used in economics are physical measures, nominal price value measures and fixed price value measures. These measures differ from one another by the variables they measure and by the variables excluded from measurements. The measurable variables in economics are quantity, quality and distribution. Excluding variables from measurement makes it possible to better focus the measurement on a given variable, yet, this means a more narrow approach. The table was compiled to compare the basic types of measurement. The first column presents the measure types, the second the variables being measured, and the third column gives the variables excluded from measurement.

Profit, in accounting, is an income distributed to the owner in a profitable market production process (business). Profit is a measure of profitability which is the owner's major interest in the income-formation process of market production. There are several profit measures in common use.

Production for use is a phrase referring to the principle of economic organization and production taken as a defining criterion for a socialist economy. It is held in contrast to production for profit. This criterion is used to distinguish communism from capitalism, and is one of the fundamental defining characteristics of communism.

<span class="mw-page-title-main">Partial productivity</span>

Measurement of partial productivity refers to the measurement solutions which do not meet the requirements of total productivity measurement, yet, being practicable as indicators of total productivity. In practice, measurement in production means measures of partial productivity. In that case, the objects of measurement are components of total productivity, and interpreted correctly, these components are indicative of productivity development. The term of partial productivity illustrates well the fact that total productivity is only measured partially – or approximately. In a way, measurements are defective but, by understanding the logic of total productivity, it is possible to interpret correctly the results of partial productivity and to benefit from them in practical situations.

Constant capital (c), is a concept created by Karl Marx and used in Marxian political economy. It refers to one of the forms of capital invested in production, which contrasts with variable capital (v). The distinction between constant and variable refers to an aspect of the economic role of factors of production in creating a new value.

References