This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
The profit model is the linear, deterministic algebraic model used implicitly by most cost accountants. Starting with, profit equals sales minus costs, it provides a structure for modeling cost elements such as materials, losses, multi-products, learning, depreciation etc. It provides a mutable conceptual base for spreadsheet modelers. This enables them to run deterministic simulations or 'what if' modelling to see the impact of price, cost or quantity changes on profitability.
where:
For an expansion of the model see below.
The justification for wanting to express profit as an algebraic model is given by Mattessich in 1961:
Most of the definitions in cost accounting are in an unclear narrative form, not readily associated with other definitions of accounting calculations. For example, preparing a comparison of fixed cost variances in stock under different stock valuation methods can be confusing. Another example is modelling labour variances with learning curve corrections and stock level changes. With the absence of a basic profit model in an algebraic form, confident development of such models is difficult.
The development of spreadsheets has led to a decentralisation of financial modelling. This has often resulted in model builders lacking training in model construction. Before any professional model is built it is usually considered wise to start by developing a mathematical model for analysis. The profit model provides a general framework plus some specific examples of how such an a priori profit model might be constructed.
The presentation of a profit model in an algebraic form is not new. Mattessich's model, [1] while large, does not include many costing techniques such as learning curves and different stock valuation methods. Also, it was not presented in a form that most accountants were willing or able to read. This paper presents a more extended model analysing profit but it does not, unlike Mattessich, extend to the balance sheet model. Its form, of starting with the basic definition of profit and becoming more elaborate, may make it more accessible to accountants.
Most cost accounting textbooks [2] explain basic Cost Volume Profit modeling in an algebraic form, but then revert to an 'illustrative' [3] approach. This 'illustrative' approach uses examples or narrative to explain management accounting procedures. This format, though useful when communicating with humans, can be difficult to translate into an algebraic form, suitable for computer model building. Mepham [4] extended the algebraic, or deductive, approach to cost accounting to cover many more techniques. He develops his model to integrate with the optimizing models in operations research. The profit model comes out of Mephams work, extending it but only in a descriptive, linear form.
The basic profit model is sales minus costs. Sales are made up of quantity sold multiplied by their price. Costs are usually divided between Fixed costs and variable costs.
Using:
Thus the profit can be calculated from:
Notice that w (average unit production cost) includes the fixed and variable costs. The square brackets contain the cost of goods sold, wq not cost of good made wx where x = cost of good sold.
To show cost of good sold, the opening and closing finished goods stocks need to be included The profit model would then be:
Presenting the profit calculation in this form immediately demands that some of the costs be more carefully defined.
The unit production costs (w) can be separated into fixed and variable costs:
where
The introduction of this separation of w allows for consideration of the behaviour of costs for different levels of production. A linear cost curve is assumed here, divided between the constant (F) and its slope (v). If the modeller has access to the details of non-linear cost curves then w will need to be defined by the appropriate function.
Replacing wx in (equation 2) and making F = Fn + Fm:
Moving on to other extensions of the basic model, the cost elements such as direct materials, direct labour and variable overheads can be included. If a non-linear function is available and thought useful such functions can be substituted for the functions used here.
The material cost of sales = m * μ * q, where
m is the amount of material in one unit of finished goods.
μ is the cost per unit of the raw material.
The labour cost of sales = l λ q, where
The variable overhead cost of sales = nq where n is the variable overhead cost per unit.
This is not here subdivided between quantity per finished goods units and cost per unit.
Thus the variable cost v * q can now be elaborated into:
If the production quantity is required the finished goods stock will need to be added.
In a simple case two materials can be accommodated in the model by simply adding another m * μ. In more realistic situations a matrix and a vector will be necessary (see later).
If material cost of purchases is to be used rather than material cost of production it will be necessary to adjust for material stocks. That is,
where
All depreciation rules can be stated as equations representing their curve over time. The reducing balance method provides one of the more interesting examples.
Using c = cost, t = time, L = life, s = scrap value, Fd = time based depreciation:
This equation is better known as the rule: Depreciation per year = Last year's written down value multiplied by a constant %
The limits are 0 < t < L, and the scrap value has to be greater than zero. (For zero use 0.1).
Remembering that time-based depreciation is a fixed cost and usage-based depreciation can be a variable cost, depreciation can easily be added into the model (equation 5).
Thus, the profit model becomes:
where, nd = usage (as q) based depreciation and π = annual profit.
In the above, the value of the unit finished goods cost ‘w' was left undefined. There are numerous alternatives to how stock (w) is valued but only two will be compared here.
The marginal versus absorption costing debate, includes the question of the valuation of stock (w).
Should w = v or as (3) w = (Fm + v x)/x.
(i) Under marginal costing: w = v. Inserting in (4),
Becomes
This can be simplified by taking v out and noting, opening stock quantity + production - closing stock quantity = sales quantity (q) so,
Note, v q = variable cost of goods sold.
(ii) Using full (absorption) costing Using (equation 3), where xp = planned production, x1 = period production w = (Fm + v xp)/xp = Fm/xp + v. This can be shown to result in:
Note the strange presence of 'x' in the model. Notice also that the absorption model (equation 10) is the same as the marginal costing model (equation 9) except for the end part:
This part represents the fixed costs in stock. This is better seen by remem¬bering q — x= go—g1 so it could be written
The model form with 'q' and 'x' in place of' g0 and g1 allows profits to be calculated when only the sales and production figures are known.
A spreadsheet could be prepared for a company with increasing then decreasing levels of sales and constant production. It could have another column showing profit under increasing sales and constant production. Thus the effects of carrying fixed costs in stock can be simulated. Such modelling thus provides a very useful tool in the marginal versus full costing debate.
One way of modeling for losses is to use:
The model, with all these losses together will look like,
Note that labour and variable overhead losses could also have been included.
So far the model has assumed very few products and/or cost elements. As many firms are multi-product the model they use must be able to handle this problem. Whilst the mathematics here is straightforward the accounting problems introduced are enormous: the cost allocation problem being a good example. Other examples include calculation of break-even points, productivity measures and the optimisation of limited resources. Here only the mechanics of building a multi-dimension model will be outlined.
If a firm sells two products (a and b) then the profit model (equation 9),
All fixed costs have been combined in F
Therefore, for multiple products
Where Σ = the sum of. Which can be drafted as a vector or matrix in a spreadsheet
or
The profit model may represent actual data (c), planned data (p)or standard data (s) which is the actual sales quantities at the planned costs.
The actual data model will be (using equation 8):
The planned data model will be (using equation 8):
The standard data model will be (using equation 8):
Operating variances are obtained by subtracting the actual model from the standard model.
It is possible to add non linear cost curves to the Profit model. For example, if with learning, the labour time per unit will decrease exponentially over time as more product is made, then the time per unit is:
where r = average time. b = learning rate. q = quantity.
Inserting into equation 8
This equation is best solved by trial and error, the Newton Raphson method or graphing. Like depreciation within the model, the adjustment for learning does provide a form of non-linear sub-modelling.
Rather than the variable be absolute amounts, they might be percentage changes. This represents a major change in approach from the model above. The model is often used in the 'now that ... (say) the cost of labour has gone up by 10%' format. If a model can be developed that only uses such percentage changes then the cost of collecting absolute quantities will be saved. [5]
The notation used below is of attaching a % sign to variables to indicate the change of that variable, for example, p% = 0.10 if the selling price is assumed to change by 10%,
Let x = q and C = contribution
Starting with the absolute form of the contribution model (equation (9) rearranged):
The increase in the contribution which results from an increase in p, v and/or q can be calculated thus:
rearranging and using α = (p — v)/p,
This model might look messy but it is very powerful. It makes very few demands on data, especially if some of the variables do not change. It is possible to develop most of the models presented above in this percentage change format.
Cost accounting is defined by the Institute of Management Accountants as "a systematic set of procedures for recording and reporting measurements of the cost of manufacturing goods and performing services in the aggregate and in detail. It includes methods for recognizing, allocating, aggregating and reporting such costs and comparing them with standard costs". Often considered a subset of managerial accounting, its end goal is to advise the management on how to optimize business practices and processes based on cost efficiency and capability. Cost accounting provides the detailed cost information that management needs to control current operations and plan for the future.
In economics, profit maximization is the short run or long run process by which a firm may determine the price, input and output levels that will lead to the highest possible total profit. In neoclassical economics, which is currently the mainstream approach to microeconomics, the firm is assumed to be a "rational agent" which wants to maximize its total profit, which is the difference between its total revenue and its total cost.
The break-even point (BEP) in economics, business—and specifically cost accounting—is the point at which total cost and total revenue are equal, i.e. "even". In layman's terms, after all costs are paid for there is neither profit nor loss. In economics specifically, the term has a broader definition; even if there is no net loss or gain, and one has "broken even", opportunity costs have been covered and capital has received the risk-adjusted, expected return. The break-even analysis was developed by Karl Bücher and Johann Friedrich Schär.
In economics, the marginal cost is the change in the total cost that arises when the quantity produced is increased, i.e. the cost of producing additional quantity. In some contexts, it refers to an increment of one unit of output, and in others it refers to the rate of change of total cost as output is increased by an infinitesimal amount. As Figure 1 shows, the marginal cost is measured in dollars per unit, whereas total cost is in dollars, and the marginal cost is the slope of the total cost, the rate at which it increases with output. Marginal cost is different from average cost, which is the total cost divided by the number of units produced.
In economics, a production function gives the technological relation between quantities of physical inputs and quantities of output of goods. The production function is one of the key concepts of mainstream neoclassical theories, used to define marginal product and to distinguish allocative efficiency, a key focus of economics. One important purpose of the production function is to address allocative efficiency in the use of factor inputs in production and the resulting distribution of income to those factors, while abstracting away from the technological problems of achieving technical efficiency, as an engineer or professional manager might understand it.
Fixed investment in economics is the purchasing of newly produced fixed capital. It is measured as a flow variable – that is, as an amount per unit of time.
In economics and finance, the profit rate is the relative profitability of an investment project, a capitalist enterprise or a whole capitalist economy. It is similar to the concept of rate of return on investment.
Economic order quantity (EOQ), also known as financial purchase quantity or economic buying quantity, is the order quantity that minimizes the total holding costs and ordering costs in inventory management. It is one of the oldest classical production scheduling models. The model was developed by Ford W. Harris in 1913, but the consultant R. H. Wilson applied it extensively, and he and K. Andler are given credit for their in-depth analysis.
In accounting and economics, fixed costs, also known as indirect costs or overhead costs, are business expenses that are not dependent on the level of goods or services produced by the business. They tend to be recurring, such as interest or rents being paid per month. These costs also tend to be capital costs. This is in contrast to variable costs, which are volume-related and unknown at the beginning of the accounting year. Fixed costs have an effect on the nature of certain variable costs.
Economics, business, accounting, and related fields often distinguish between quantities that are stocks and those that are flows. These differ in their units of measurement. A stock is measured at one specific time, and represents a quantity existing at that point in time, which may have accumulated in the past. A flow variable is measured over an interval of time. Therefore, a flow would be measured per unit of time. Flow is roughly analogous to rate or speed in this sense.
In business and accounting, net income is an entity's income minus cost of goods sold, expenses, depreciation and amortization, interest, and taxes for an accounting period.
Operating leverage is a measure of how revenue growth translates into growth in operating income. It is a measure of leverage, and of how risky, or volatile, a company's operating income is.
Cournot competition is an economic model used to describe an industry structure in which companies compete on the amount of output they will produce, which they decide on independently of each other and at the same time. It is named after Antoine Augustin Cournot (1801–1877) who was inspired by observing competition in a spring water duopoly. It has the following features:
In economics, a cost curve is a graph of the costs of production as a function of total quantity produced. In a free market economy, productively efficient firms optimize their production process by minimizing cost consistent with each possible level of production, and the result is a cost curve. Profit-maximizing firms use cost curves to decide output quantities. There are various types of cost curves, all related to each other, including total and average cost curves; marginal cost curves, which are equal to the differential of the total cost curves; and variable cost curves. Some are applicable to the short run, others to the long run.
In economics, total cost (TC) is the minimum financial cost of producing some quantity of output. This is the total economic cost of production and is made up of variable cost, which varies according to the quantity of a good produced and includes inputs such as labor and raw materials, plus fixed cost, which is independent of the quantity of a good produced and includes inputs that cannot be varied in the short term such as buildings and machinery, including possibly sunk costs.
The newsvendormodel is a mathematical model in operations management and applied economics used to determine optimal inventory levels. It is (typically) characterized by fixed prices and uncertain demand for a perishable product. If the inventory level is , each unit of demand above is lost in potential sales. This model is also known as the newsvendor problem or newsboy problem by analogy with the situation faced by a newspaper vendor who must decide how many copies of the day's paper to stock in the face of uncertain demand and knowing that unsold copies will be worthless at the end of the day.
Cost–volume–profit (CVP), in managerial economics, is a form of cost accounting. It is a simplified model, useful for elementary instruction and for short-run decisions.
In economics, the marginal product of labor (MPL) is the change in output that results from employing an added unit of labor. It is a feature of the production function and depends on the amounts of physical capital and labor already in use.
The Cigar Box Method is a toolkit which consists of a series of spreadsheets to help entrepreneurs, notably those in agribusiness in emerging markets, to calculate the costs of goods, margins, contribution, break-even quantity and profitability. It can be used for a single product or a complete portfolio of products. There are six Cigar Box (CB) categories:
In microeconomics, a monopoly price is set by a monopoly. A monopoly occurs when a firm lacks any viable competition and is the sole producer of the industry's product. Because a monopoly faces no competition, it has absolute market power and can set a price above the firm's marginal cost.