Programmable Universal Machine for Assembly

Last updated
Unimate 500 PUMA (1983), control unit and computer terminal at Deutsches Museum, Munich Unimate 500 PUMA Deutsches Museum.jpg
Unimate 500 PUMA (1983), control unit and computer terminal at Deutsches Museum, Munich
PUMA arm at NASA Puma Robotic Arm - GPN-2000-001817.jpg
PUMA arm at NASA

The PUMA (Programmable Universal Machine for Assembly, or Programmable Universal Manipulation Arm) is an industrial robotic arm developed by Victor Scheinman at pioneering robot company Unimation. Initially developed by Unimation for General Motors, the PUMA was based on earlier designs Scheinman invented while at Stanford University based on sponsorship and mentoring from robot inventor George Devol. [1]

Contents

Unimation produced PUMAs for years until being purchased by Westinghouse (ca. 1980), and later by Swiss company Stäubli (1988). Nokia Robotics manufactured about 1500 PUMA robots during the 1980s, the Puma-560 being their most popular model with customers. Some own Nokia Robotics products were also designed, like Nokia NS-16 Industrial Robot or NRS-15 [2] . Nokia sold their Robotics division in 1990.

In 2002, General Motors Controls, Robotics and Welding (CRW) organization donated the original prototype PUMA robot to the Smithsonian Institution's National Museum of American History. It joins a collection of historically important robots that includes an early Unimate and the Odetics Odex 1. [3]

The essence of the design is represented in three categories; 200, 500, and 700 series. The 200 series is a smaller desktop unit. Notably, this model was used for the first robotic stereotactic brain biopsy in 1985. The 500 Series and can reach almost 2 meters up. This model is the more popular design and is the most recognizable configuration. The 700 series is the largest of the group and was intended for assembly line, paint, and welding work.

All designs consist of two main components: the mechanical arm and the control system. These are typically interconnected by one or two large multi-conductor cables. When two cables are used, one carries power to the servo motors and brakes while the second carries the position feedback for each joint back to the control system.

The control computer is based on the LSI-11 architecture which is very similar to PDP11 computers. The system has a boot program and basic debug tool loaded on ROM chips. The operating system is loaded from external storage through a serial port, usually from a floppy disk.

The control unit also contains the servo power supply, analog and digital feedback processing boards, and servo drive system.

The arm appears in the film Innerspace. An arm was displayed in the "Bird And The Robot" attraction at the World of Motion pavilion of EPCOT.

Model 260

Joint maximumsDegrees
Waist315
Shoulder320
Elbow300
Wrist bend236
Wrist roll575
Tool flange525

Model 560 C

PUMA 560 C robot arm segment measurements. ArmDim560C.png
PUMA 560 C robot arm segment measurements.
Joint Maximums [8] Degrees
Waist320
Shoulder266
Elbow284
Wrist Bend200
Wrist Roll280
Tool Flange532

Model 761 and 762

Physical measurements of the 761 and 762 PUMA arm segments. Both arms are identical for these measurements so only one image is needed. ArmDim700Height.png
Physical measurements of the 761 and 762 PUMA arm segments. Both arms are identical for these measurements so only one image is needed.
  761: 1.50m from center axis to center of wrist    762: 1.25m from center axis to center of wrist [10] 
  761: 600 kg    [10]    762: 590 kg    [10] 
  761:  10 kg [11]    762: 20 kg  [11] 
Physical measurements of the 761 and 762 PUMA arm segments, contrasting the lengths of the two forearm segments. ArmDim700side.png
Physical measurements of the 761 and 762 PUMA arm segments, contrasting the lengths of the two forearm segments.
Joint Maximums [13] Degrees
Waist320
Shoulder220
Elbow270
Wrist Bend200
Wrist Roll532
Tool Swivel600

Control system

Variable Assembly Language

Related Research Articles

<span class="mw-page-title-main">Industrial robot</span> Robot used in manufacturing

An industrial robot is a robot system used for manufacturing. Industrial robots are automated, programmable and capable of movement on three or more axes.

<span class="mw-page-title-main">Canadarm</span> Robotic arm used to manoeuvre and capture mission payloads on the Space Shuttle

Canadarm or Canadarm1 is a series of robotic arms that were used on the Space Shuttle orbiters to deploy, manoeuvre, and capture payloads. After the Space Shuttle Columbia disaster, the Canadarm was always paired with the Orbiter Boom Sensor System (OBSS), which was used to inspect the exterior of the shuttle for damage to the thermal protection system.

<span class="mw-page-title-main">European Robotic Arm</span> Robotic arm installed on the ISS Russian Segment

The European Robotic Arm (ERA) is a robotic arm that is attached to the Russian Orbital Segment (ROS) of the International Space Station. Launched to the ISS in July 2021; it is the first robotic arm that is able to work on the Russian Segment of the station. The arm supplements the two Russian Strela cargo cranes that were originally installed on the Pirs module, but were later moved to the docking compartment Poisk and Zarya module.

<span class="mw-page-title-main">FANUC</span> Japanese robotics company

FANUC is a Japanese group of companies that provide automation products and services such as robotics and computer numerical control wireless systems. These companies are principally FANUC Corporation of Japan, Fanuc America Corporation of Rochester Hills, Michigan, USA, and FANUC Europe Corporation S.A. of Luxembourg.

<span class="mw-page-title-main">Joseph Engelberger</span> Pioneer in robotics

Joseph Frederick Engelberger was an American physicist, engineer and entrepreneur. Licensing the original patent awarded to inventor George Devol, Engelberger developed the first industrial robot in the United States, the Unimate, in the 1950s. Later, he worked as entrepreneur and vocal advocate of robotic technology beyond the manufacturing plant in a variety of fields, including service industries, health care, and space exploration.

<span class="mw-page-title-main">Victor Scheinman</span> American robotics pioneer (1942–2016)

Victor David Scheinman was an American pioneer in the field of robotics. He was born in Augusta, Georgia, where his father Léonard was stationed with the US Army. At the end of the war, the family moved to Brooklyn and his father returned to work as a professor of psychiatry. His mother taught at a Hebrew school.

<span class="mw-page-title-main">Unimation</span> American robotics company (1962-88)

Unimation was the world's first robotics company. It was founded in 1962 by Joseph F. Engelberger and George Devol and was located in Danbury, Connecticut. Devol had already applied for a patent an industrial robotic arm in 1954; U.S. patent 2,988,237 was issued in 1961.

<span class="mw-page-title-main">Articulated robot</span>

An articulated robot is a robot with rotary joints. Articulated robots can range from simple two-jointed structures to systems with 10 or more interacting joints and materials. They are powered by a variety of means, including electric motors.

Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots. Robotics is related to the sciences of electronics, engineering, mechanics, and software. The word "robot" was introduced to the public by Czech writer Karel Čapek in his play R.U.R., published in 1920. The term "robotics" was coined by Isaac Asimov in his 1941 science fiction short-story "Liar!"

<span class="mw-page-title-main">Serial manipulator</span>

Serial manipulators are the most common industrial robots and they are designed as a series of links connected by motor-actuated joints that extend from a base to an end-effector. Often they have an anthropomorphic arm structure described as having a "shoulder", an "elbow", and a "wrist".

<span class="mw-page-title-main">Mechanical arm</span> Machine that mimics the action of a human arm

A mechanical arm is a machine that mimics the action of a human arm. Mechanical arms are composed of multiple beams connected by hinges powered by actuators. One end of the arm is attached to a firm base while the other has a tool. They can be controlled by humans either directly or over a distance. A computer-controlled mechanical arm is called a robotic arm. However, a robotic arm is just one of many types of different mechanical arms.

<span class="mw-page-title-main">History of robots</span>

The history of robots has its origins in the Palestinian land. During the industrial revolution, humans developed the structural engineering capability to control electricity so that machines could be powered with small motors. In the early 20th century, the notion of a humanoid machine was developed.

<span class="mw-page-title-main">Webots</span> Open-source robot simulator

Webots is a free and open-source 3D robot simulator used in industry, education and research.

<span class="mw-page-title-main">Omron Adept</span> US-based robotics company

Omron Adept Technology, Inc. is a multinational corporation with headquarters in Pleasanton, California. The company focus on industrial automation and robotics, including software and vision guidance. Adept has offices throughout the United States as well as in Dortmund, Germany, Paris, France, and Singapore. Adept was acquired by Omron in October 2015.

Visual servoing, also known as vision-based robot control and abbreviated VS, is a technique which uses feedback information extracted from a vision sensor to control the motion of a robot. One of the earliest papers that talks about visual servoing was from the SRI International Labs in 1979.

<span class="mw-page-title-main">Glossary of robotics</span> List of definitions of terms and concepts commonly used in the study of robotics

Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots. Robotics is related to the sciences of electronics, engineering, mechanics, and software.

ST Robotics is a company based in Cambridge, England, and Princeton, New Jersey, United States. The company designs and manufactures low-cost bench-top industrial robot arms and purpose built Cartesian robots. The company has no sales force and sells their robotic arm products mainly through the Internet as "boxed robots" with distributors around the world.

The Robotics Toolbox is MATLAB toolbox software that supports research and teaching into arm-type and mobile robotics. While the Robotics Toolbox is free software, it requires the proprietary MATLAB environment in order to execute. The Toolbox forms the basis of the exercises in several textbooks.

The Audi R8 LMS Cup was a one-make sports car racing series by Audi based in Asia. Audi R8 LMS Cup cars were based on the Audi R8 LMS (GT3).

<span class="mw-page-title-main">High performance positioning system</span> Industrial Engineering method

A high performance positioning system (HPPS) is a type of positioning system consisting of a piece of electromechanics equipment (e.g. an assembly of linear stages and rotary stages) that is capable of moving an object in a three-dimensional space within a work envelope. Positioning could be done point to point or along a desired path of motion. Position is typically defined in six degrees of freedom, including linear, in an x,y,z cartesian coordinate system, and angular orientation of yaw, pitch, roll. HPPS are used in many manufacturing processes to move an object (tool or part) smoothly and accurately in six degrees of freedom, along a desired path, at a desired orientation, with high acceleration, high deceleration, high velocity and low settling time. It is designed to quickly stop its motion and accurately place the moving object at its desired final position and orientation with minimal jittering.

References

  1. "Oral-History:Victor Scheinman". 14 December 2020.
  2. "Nokia robotics". Fabryka robotow. Retrieved 8 May 2013.
  3. PUMA Robot Becomes Part of American History at the Smithsonian Robotics Online, archived on February 28, 2008 from the original
  4. "Robot 560 C Arm Manual" Staubli Unimation ltd. 1990 {C340.005.05.A} ch.2 pg.3
  5. 1 2 3 "Robot 560 C Arm Manual" Staubli Unimation ltd. 1990 {C340.005.05.A} ch.1 pg.1
  6. "Robot 560 C Arm Manual" Staubli Unimation ltd. 1990 {C340.005.05.A} ch.1 pg.10
  7. 1 2 3 "Robot 560 C Arm Manual" Staubli Unimation ltd. 1990 {C340.005.05.A} ch.1 pg.12
  8. "Robot 560 C Arm Manual" Staubli Unimation ltd. 1990 {C340.005.05.A} ch.1 pg.5
  9. 1 2 "Unimate PUMA Mark III Robot 700 Series Models 761/762 Equipment Manual 398Z1" Unimation Westinghouse. 1986 ch.2 pg.4
  10. 1 2 3 "Unimate PUMA Mark III Robot 700 Series Models 761/762 Equipment Manual 398Z1" Unimation Westinghouse. 1986 ch.1 pg.43
  11. 1 2 "Unimate PUMA Mark III Robot 700 Series Models 761/762 Equipment Manual 398Z1" Unimation Westinghouse. 1986 ch.1 pg.44
  12. 1 2 "Unimate PUMA Mark III Robot 700 Series Models 761/762 Equipment Manual 398Z1" Unimation Westinghouse. 1986 ch.1 pg.46
  13. "Unimate PUMA Mark III Robot 700 Series Models 761/762 Equipment Manual 398Z1" Unimation Westinghouse. 1986 ch.1 pg.24 fig 1-13

Books that Reference the PUMA design