Projected dynamical system

Last updated

Projected dynamical systems is a mathematical theory investigating the behaviour of dynamical systems where solutions are restricted to a constraint set. The discipline shares connections to and applications with both the static world of optimization and equilibrium problems and the dynamical world of ordinary differential equations. A projected dynamical system is given by the flow to the projected differential equation

Contents


where K is our constraint set. Differential equations of this form are notable for having a discontinuous vector field.

History of projected dynamical systems

Projected dynamical systems have evolved out of the desire to dynamically model the behaviour of nonstatic solutions in equilibrium problems over some parameter, typically take to be time. This dynamics differs from that of ordinary differential equations in that solutions are still restricted to whatever constraint set the underlying equilibrium problem was working on, e.g. nonnegativity of investments in financial modeling, convex polyhedral sets in operations research, etc. One particularly important class of equilibrium problems which has aided in the rise of projected dynamical systems has been that of variational inequalities.

The formalization of projected dynamical systems began in the 1990s in Section 5.3 of the paper of Dupuis and Ishii. However, similar concepts can be found in the mathematical literature which predate this, especially in connection with variational inequalities and differential inclusions.

Projections and Cones

Any solution to our projected differential equation must remain inside of our constraint set K for all time. This desired result is achieved through the use of projection operators and two particular important classes of convex cones. Here we take K to be a closed, convex subset of some Hilbert space X.

The normal cone to the set K at the point x in K is given by

The tangent cone (or contingent cone) to the set K at the point x is given by

The projection operator (or closest element mapping) of a point x in X to K is given by the point in K such that

for every y in K.

The vector projection operator of a vector v in X at a point x in K is given by

Which is just the Gateaux Derivative computed in the direction of the Vector field

Projected Differential Equations

Given a closed, convex subset K of a Hilbert space X and a vector field -F which takes elements from K into X, the projected differential equation associated with K and -F is defined to be

On the interior of K solutions behave as they would if the system were an unconstrained ordinary differential equation. However, since the vector field is discontinuous along the boundary of the set, projected differential equations belong to the class of discontinuous ordinary differential equations. While this makes much of ordinary differential equation theory inapplicable, it is known that when -F is a Lipschitz continuous vector field, a unique absolutely continuous solution exists through each initial point x(0)=x0 in K on the interval .

This differential equation can be alternately characterized by

or

The convention of denoting the vector field -F with a negative sign arises from a particular connection projected dynamical systems shares with variational inequalities. The convention in the literature is to refer to the vector field as positive in the variational inequality, and negative in the corresponding projected dynamical system.

See also

Related Research Articles

<span class="mw-page-title-main">Wave equation</span> Differential equation important in physics

The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves or electromagnetic waves. It arises in fields like acoustics, electromagnetism, and fluid dynamics.

<span class="mw-page-title-main">Geodesic</span> Straight path on a curved surface or a Riemannian manifold

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.

The calculus of variations is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.

<span class="mw-page-title-main">Autonomous system (mathematics)</span> System of ordinary differential equations whose current state solely determines its evolution

In mathematics, an autonomous system or autonomous differential equation is a system of ordinary differential equations which does not explicitly depend on the independent variable. When the variable is time, they are also called time-invariant systems.

In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions are important to stability theory of dynamical systems and control theory. A similar concept appears in the theory of general state-space Markov chains usually under the name Foster–Lyapunov functions.

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form where a0(x), ..., an(x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y(n) are the successive derivatives of an unknown function y of the variable x.

In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related formulations of classical mechanics. Analytical mechanics uses scalar properties of motion representing the system as a whole—usually its kinetic energy and potential energy. The equations of motion are derived from the scalar quantity by some underlying principle about the scalar's variation.

In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form for given functions , and , together with some boundary conditions at extreme values of . The goals of a given Sturm–Liouville problem are:

In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic and parabolic partial differential equation. The method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hypersurface.

<span class="mw-page-title-main">Envelope (mathematics)</span> Curve external to a family of curves in geometry

In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.

In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action.

The work of a force on a particle along a virtual displacement is known as the virtual work.

In mathematics, an integral curve is a parametric curve that represents a specific solution to an ordinary differential equation or system of equations.

In mathematics, a variational inequality is an inequality involving a functional, which has to be solved for all possible values of a given variable, belonging usually to a convex set. The mathematical theory of variational inequalities was initially developed to deal with equilibrium problems, precisely the Signorini problem: in that model problem, the functional involved was obtained as the first variation of the involved potential energy. Therefore, it has a variational origin, recalled by the name of the general abstract problem. The applicability of the theory has since been expanded to include problems from economics, finance, optimization and game theory.

In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables). It is a two-dimensional case of the general n-dimensional phase space.

The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.

Linear dynamical systems are dynamical systems whose evolution functions are linear. While dynamical systems, in general, do not have closed-form solutions, linear dynamical systems can be solved exactly, and they have a rich set of mathematical properties. Linear systems can also be used to understand the qualitative behavior of general dynamical systems, by calculating the equilibrium points of the system and approximating it as a linear system around each such point.

In mathematics, a differential variational inequality (DVI) is a dynamical system that incorporates ordinary differential equations and variational inequalities or complementarity problems.

In mathematics, differential inclusions are a generalization of the concept of ordinary differential equation of the form

In mathematics, the slow manifold of an equilibrium point of a dynamical system occurs as the most common example of a center manifold. One of the main methods of simplifying dynamical systems, is to reduce the dimension of the system to that of the slow manifold—center manifold theory rigorously justifies the modelling. For example, some global and regional models of the atmosphere or oceans resolve the so-called quasi-geostrophic flow dynamics on the slow manifold of the atmosphere/oceanic dynamics, and is thus crucial to forecasting with a climate model.

References