Public Market Equivalent

Last updated

The public market equivalent (PME) is a collection of performance measures developed to assess private equity funds and to overcome the limitations of the internal rate of return and multiple on invested capital measurements. While the calculations differ, they all attempt to measure the return from deploying a private equity fund's cash flows into a stock market index.

Contents

Long-Nickels PME

The first PME measure was proposed by Austin M. Long and Craig J. Nickels in 1996. [1]

The analysis is referred in the industry as Long Nickels PME, LN-PME, PME, or ICM. Long and Nickels stated that they preferred the acronym ICM (Index Comparison Method): [2]

The ICM is also known as the Public Market Equivalent (PME). We prefer the term ICM, because it better describes the methodology, which is not limited to the use of a public market index to calculate its results

The PME analysis is covered under US patent 7058583 [3]

Methodology

Long and Nickels compared the performance of a private equity fund with the S&P500 Index by creating a theoretical investment into the S&P using the Private Equity fund cashflows :

As the index price evolves, the value of the theoretical amount invested in the index changes. When receiving a valuation for the fund, we can then compare the value of the fund investment to the theoretical value of the index investment.

PeriodCashflowsIndexIndex PerformanceTheoretical Investment
p1-1001000.00%100
p2-501055.00%155
p3601159.52%109.76
p4101171.74%101.67
 
Valuation (p5)1101202.56%104.28
IRR6.43%PME5.30%

Negative cashflows are treated as contributions. On the first period, a $100 call in the fund is matched by a $100 investment into the index. On the second period, the $100 index investment is now worth $105, to which is added $50 of new investment. A positive cashflow is treated by decreasing the index investment by the same value. On the valuation period, we compare the valuation received from the fund to the value of the theoretical investment. The PME IRR is obtained by computing an IRR with the index valuation as the final cashflow.

The Long Nickels PME tells how an equivalent investment in the public market would have performed. This then needs to be compared to the actual IRR of the fund. In the above example, the IRR is 1.13 percentage points above the PME, which means that the private fund outperformed the public index. The difference between the IRR and the PME is called the IRR spread.

Formula

The PME is an IRR on the cashflows of the investment, using as final cashflow an adjusted PME NAV.

Where :

is the cashflow from the investment at date s, positive for a contribution, negative for a distribution

is the value of the index at date s

then :

Limitation

As stated in Long and Nickels paper: [1]

If a private investment greatly outperforms the index because it makes frequent, large distributions, it is possible for the final value determined by the index comparison to be negative. In effect, the frequent large withdrawals from the index result in a net short position in the index comparison

This can be simulated in the previous example by having a period where the fund distributes a large amount and the index dives :

PeriodCashflowsIndexIndex PerformanceTheoretical Investment
p1-1001000.00%100
p2-501055.00%155
p3601159.52%109.76
p4100100-13.04%-4.55
 
Valuation (p5)2012020%-5.47
IRR7.77%PME1.34%

When the final valuation of the theoretical investment is negative, the IRR formula for the PME may not return any results. Even if a PME can be calculated, while the investment stays negative, every increase in the index will be interpreted as a hit in the performance of the theoretical investment : on the above example, the value of the index went back up to 120, which had a negative impact on the value of the theoretical investment. Even if the investment eventually goes back into positive values and a PME can be computed, the time spent under 0 will be improperly taken into account. [4]

The next methods by Rouvinez, and Kaplan and Schoar are partly designed to address this issue.

PME+

The PME+ was initially described in 2003 by Christophe Rouvinez [5] in a paper Private Equity Benchmarking with PME+. It is written to resolve a common issue of the Long Nickels PME : an investment outperforming the index will yield a negative value in the index theoretical investment.

PME+ Methodology

Instead of modifying the NAV of the investment, the PME+ discount every distribution by a factor computed so that the NAV of the index investment matches the NAV of the fund.

PeriodCashflowsIndexTheoretical ContributionsDiscounted DistributionsDiscounted Cashflows
p1-1001001000-100
p2-50105500-50
p36011551.6351.63
p410010086.0586.05
  
Valuation (p5)2012020
Lambda0.86
IRR7.77%PME+2.05%

Like the Long Nickels PME, the PME+ needs to be compared to the IRR. An IRR outperforming the PME means that the fund outperformed the public index.

PME+ Formula

Using Henly Notation in PME Benchmarking Method: [6]

where

and

In other words, lambda is chosen so that :

The IRR is then calculated using as cashflows :

Modified PME

The modified PME (or mPME) method was released by Cambridge Associates in October 2013. [7] [8] It provides an alternate way to tackle the negative NAV limitation of the LN-PME.

Like the LN-PME and the PME+, the mPME consider an hypothetical public investment whose performance follows the public benchmark. Each contribution in the private investment is matched by an equal contribution in the public investment. However, rather than subtracting the distributed amounts from the public investment, we compute the weight of the distribution in the private investment, and remove the same weight from the public one.

PeriodCallDistNAVIndexTheoretical ContributionsDistribution WeightTheoretical NAVWeighted DistributionsNet CF
p1100010010010001000-100
p2501651055001550-50
p306012511500.32114.705555.06
p401001510000.8713.018786.73
Valuation (p5)2012015.6115.61
IRR7.77%mPME2.02%

Formula

For each distribution, a distribution weight is calculated

The NAV of the theoretical investment is then calculated as :

The weighted Distribution is given by :

Kaplan Schoar PME

Kaplan Schoar PME was first described in 2005 by Steve Kaplan and Antoinette Schoar. [9] While the Long Nickels PME returns an IRR, the Kaplan Schoar PME (or KS-PME) returns a market multiple. A simple explanation of its computation is described into Sorensen & Jagannathan paper: [10]

Let X(t) denote the cash flow from the fund to the LP at time t. This total cash-flow stream is divided into its positive and negative parts, called distributions (dist(t)) and capital calls (call(t)). Distributions are the cash flows returned to the LP from the PE fund (net of fees) when the fund successfully sells a company. Capital calls are the LP’s investments into the fund, including the payment of ongoing management fees. The distributions and capital calls are then valued by discounting them using the realized market returns over the same time period, and the [KS-]PME is the ratio of the two resulting values:

Formula

When considering an investment at time T. The KS-PME first considers the current valuation of the investment as a distribution at date T. KS-PME is then defined as

with

Using the previous example :

PeriodContributionDistributionIndexDPI Discounted ContributionDiscounted DistributionKS PME
p110001000 12000
p25001050 57.1400
p30601150.40 062.600.35
p40101170.47 010.260.41
Valuation (p5)01101201.20 01101.03

While the Long Nickels PME needs to be compared to the actual IRR, the KS PME gives a direct indication of the performance of the fund compared to the performance of the index. A KS PME above 1 indicates that the fund overperformed the index. A KS PME below 1 indicates that the public index was a better investment than the fund.

Formula Simplification

The KS-PME formula can be simplified by removing from the sums :

The Kaplan Schoar formula is independent of the time period used to forecast or discount the cashflows. This is an advantage over PME formulas that use an IRR calculations, whose final value will decrease over time.

Usage

The KS PME is the subject of a paper from the Columbia Business School [10] assessing that The [Kaplan Schoar] PME provides a valid economic performance measure when the investor ("LP") has log-utility preferences and the return on the LP’s total wealth equals the market return.

Relation between LN-PME and KS-PME

In a 2008 paper The common Mathematical Foundation of ACG's ICM and AICM and the K&S PME, [11] Austin Long studies the mathematical link between LN PME and KS PME.

Starting with KS PME formula :

From the LN-PME formula :

By merging the two formulas :

Direct Alpha

The Direct Alpha was introduced on March 6, 2014, in a paper by Gredil, Griffiths, and Stucke. [7]

It is deduced from the KS-PME calculation by computing an IRR using the discounted contributions and distributions, and take its natural logarithm.

with being the time interval for which alpha is computed (usually in years) [7]

PeriodCashflowsIndexIndex Performance Discounted Cashflows
p1-1001001.20 -120
p2-501051.14 -57.14
p3601151.04 62.60
p4101171.03 10.26
Valuation(p5)1101201 110
a (IRR)  :1.09%
Direct Alpha1.08%

Derivation

As an introduction, it is reminded that the computation of an IRR for the set of cashflows and final value is done by solving for :

The direct alpha formula is derived from the definition of in Modern portfolio theory. We define , the rate of return, as the sum of a market return plus an alpha :

in the scope of direct alpha, we consider that r(t) and b(t) are continuous rate. Hence, the value of a cashflow at time is :

using the benchmark values, we know that :

Hence :

by resolving the integral, and discretizing the time variable such as  :

We use this formula for every contribution in the private investment :

Finally, we define a as

This brings us back to a typical IRR formula. In other words, the direct alpha is calculated by computing an IRR with the benchmark discounted cashflows, and then computing with

Excess IRR

Different names for this methodology includes alpha, excess IRR, Implied Private Premium ("IPP") and PME Alpha. [12] [13] [14]

The first reference of the alpha was in a 2005 paper from Phalippou and Gottschalg [12] and is simply named alpha, or excess IRR. The analysis is also explained in detail and named GEM Implied Private Premium (or "IPP") by Global Endowment Management [15]

Formula

The excess IRR is calculated by resolving in the following equation :

with

Methodology

To calculate the Implied Private Premium, we compute the future values of a private investment's historical distributions and contributions. Each cash flow is compounded at a rate of return equaling the benchmark's annualized return plus the IPP. We then solve for the required IPP such that the PME ratio is set to one. IPP uses annual compounding to be consistent with other reporting methodologies and comparable to IRR.

More specifically, the Implied Private Premium is solved numerically from

where and are contributions and distributions at time and , respectively; is the annualized benchmark return from time to , and is the IPP we are solving for.

Derivation

Starting with the definition of the IRR, which is computed by resolving in

we consider r as the sum of two components : , with being the annually compounded benchmark performance between and .

by replacing in the original equation :

Comparison with Direct Alpha

The theoretical foundation of IPP is similar to that of Direct Alpha; however, the implementation details differ. The advantage of IPP is that it's an annually compounded, arithmetic excess return. This allows IPP to be directly comparable to generally accepted performance metrics such as IRR (also an annually compounded quantity). By contrast, the continuous direct alpha is not measured in the same unit as IRR, while the discrete direct alpha is a geometric excess return.

Other PME analysis

Other less common PME analyses exists, usually as variation from either the Long Nickels PME or the Kaplan Schoar PME.

Alignment Capital defines the Alternative ICM, or AICM [11] as a variation from the Long Nickels PME :

While ACG’s ICM calculation assumes that the capital invested into the index is a long position, the alternative index comparison method (AICM) assumes the opposite – that is, the cash used to invest in the private market investment results, not from a source external to both the private market investment and the index, but from a short position in (i.e., a sale of) the index. Expressed in the same terms, the AICM calculation of the ending value of the index (the ending value used to calculate the AICM) is as follows:

In Valuing Private Equity, December 13, 2011, [16] Sorensen, Wang and Yang defines an alternate PME based on the KS PME :

There are three concerns with the standard PME measure. First, the denominator combines two types of cash flows, the investment and the management fees. Management fees are effectively a risk-free claim and should be discounted at a rate close to the risk-free rate. Second, the numerator contains the total proceeds net of carried interest. The carried interest is effectively a call option, making the LP's total payoff at maturity less risky than the underlying asset. Hence, it should be discounted at a lower rate than the underlying PE investment. Finally, the beta of the PE investment may not equal one.To address these concerns, we define the adjusted PME as follows :

Related Research Articles

<span class="mw-page-title-main">Exponential function</span> Mathematical function, denoted exp(x) or e^x

The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation, but modern definitions allow it to be rigorously extended to all real arguments, including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to opine that the exponential function is "the most important function in mathematics".

<span class="mw-page-title-main">Natural logarithm</span> Logarithm to the base of the mathematical constant e

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

The net present value (NPV) or net present worth (NPW) applies to a series of cash flows occurring at different times. The present value of a cash flow depends on the interval of time between now and the cash flow. It also depends on the annual effective discount rate. NPV accounts for the time value of money. It provides a method for evaluating and comparing capital projects or financial products with cash flows spread over time, as in loans, investments, payouts from insurance contracts plus many other applications.

<span class="mw-page-title-main">Hyperbolic functions</span> Collective name of 6 mathematical functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

In mathematics, a power series is an infinite series of the form

In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

<span class="mw-page-title-main">Incomplete gamma function</span> Types of special mathematical functions

In mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

<span class="mw-page-title-main">Curvilinear coordinates</span> Coordinate system whose directions vary in space

In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible at each point. This means that one can convert a point given in a Cartesian coordinate system to its curvilinear coordinates and back. The name curvilinear coordinates, coined by the French mathematician Lamé, derives from the fact that the coordinate surfaces of the curvilinear systems are curved.

<span class="mw-page-title-main">Lemniscate constant</span> Ratio of the perimeter of Bernoullis lemniscate to its diameter

In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.

In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.

In mathematics, an infinite periodic continued fraction is a continued fraction that can be placed in the form

The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.

In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.

The decimal value of the natural logarithm of 2 is approximately

<span class="mw-page-title-main">Kirchhoff–Love plate theory</span>

The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love using assumptions proposed by Kirchhoff. The theory assumes that a mid-surface plane can be used to represent a three-dimensional plate in two-dimensional form.

<span class="mw-page-title-main">Bending of plates</span>

Bending of plates, or plate bending, refers to the deflection of a plate perpendicular to the plane of the plate under the action of external forces and moments. The amount of deflection can be determined by solving the differential equations of an appropriate plate theory. The stresses in the plate can be calculated from these deflections. Once the stresses are known, failure theories can be used to determine whether a plate will fail under a given load.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

Curvilinear coordinates can be formulated in tensor calculus, with important applications in physics and engineering, particularly for describing transportation of physical quantities and deformation of matter in fluid mechanics and continuum mechanics.

In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.

References

  1. 1 2 "A Private Investment Benchmark" (PDF). Retrieved 2014-03-05.
  2. Inside Private Equity : The professional Investor Handbook by Kocis, Bachman, Long and Nickels, page 157
  3. "Patent US7058583 - Method for calculating portfolio scaled IRR" . Retrieved 2014-03-05.
  4. Jost, Philippe; Stoll, Philipp. "Quantifying the shortness issue of PME" (PDF).
  5. "Private Equity Benchmarking with PME" (PDF). Capdyn.com. Retrieved 2014-03-06.
  6. Samuel Henly (2013-08-12). "PME Benchmarking Methods" (PDF). Retrieved 2014-03-05.
  7. 1 2 3 "Benchmarking Private Equity: The Direct Alpha Method". SSRN   2403521.{{cite journal}}: Cite journal requires |journal= (help)
  8. "New Method for Comparing Performance of Private Investments with Public Investments Introduced by Cambridge Associates". Cambridge Associates.
  9. "Private Equity Performance:Returns, Persistence and Capital Flows" (PDF). University of Chicago Graduate School of Business. Retrieved 2014-03-05.
  10. 1 2 Morten Sorensen, Ravi Jagannathan. "The Public Market Equivalent and Private Equity Performance". Papers.ssrn.com. SSRN   2347972.{{cite journal}}: Cite journal requires |journal= (help)
  11. 1 2 "A Method for Quantifying Concentration of Returns in Private Equity Portfolios" (PDF). Retrieved 2014-03-05.
  12. 1 2 "Performance of Private Equity Funds, page 17". Ludovic Phalippou & Olivier Gottschalg. SSRN   473221.{{cite journal}}: Cite journal requires |journal= (help)
  13. "Evolution of MIRR: PME Alpha" . Retrieved 11 December 2014.
  14. "The GEM Implied Private Premium (IPP) Private Equity Benchmark" (PDF). Global Endowment Management, LP. Retrieved 2014-11-21.
  15. "Trademark GEM implied Private Premium".
  16. "Valuing private equity" (PDF). 2011-12-13. Retrieved 2014-03-05.