Pullback (cohomology)

Last updated

In algebraic topology, given a continuous map f: XY of topological spaces and a ring R, the pullback along f on cohomology theory is a grade-preserving R-algebra homomorphism:

Algebraic topology branch of mathematics

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

In topology and related branches of mathematics, a topological space may be defined as a set of points, along with a set of neighbourhoods for each point, satisfying a set of axioms relating points and neighbourhoods. The definition of a topological space relies only upon set theory and is the most general notion of a mathematical space that allows for the definition of concepts such as continuity, connectedness, and convergence. Other spaces, such as manifolds and metric spaces, are specializations of topological spaces with extra structures or constraints. Being so general, topological spaces are a central unifying notion and appear in virtually every branch of modern mathematics. The branch of mathematics that studies topological spaces in their own right is called point-set topology or general topology.

from the cohomology ring of Y with coefficients in R to that of X. The use of the superscript is meant to indicate its contravariant nature: it reverses the direction of the map. For example, if X, Y are manifolds, R the field of real numbers, and the cohomology is de Rham cohomology, then the pullback is induced by the pullback of differential forms.

In mathematics, specifically algebraic topology, the cohomology ring of a topological space X is a ring formed from the cohomology groups of X together with the cup product serving as the ring multiplication. Here 'cohomology' is usually understood as singular cohomology, but the ring structure is also present in other theories such as de Rham cohomology. It is also functorial: for a continuous mapping of spaces one obtains a ring homomorphism on cohomology rings, which is contravariant.

De Rham cohomology cohomology with real coefficients computed using differential forms

In mathematics, de Rham cohomology is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties.

In the mathematical fields of differential geometry and tensor calculus, differential forms are an approach to multivariable calculus that is independent of coordinates. Differential forms provide a unified approach to define integrands over curves, surfaces, volumes, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

The homotopy invariance of cohomology states that if two maps f, g: XY are homotopic to each other, then they determine the same pullback: f* = g*.

In contrast, a pushforward for de Rham cohomology for example is given by integration-along-fibers.

Definition from chain complexes

We first review the definition of the cohomology of the dual of a chain complex. Let R be a commutative ring, C a chain complex of R-modules and G an R-module. Just as one lets , one lets

where Hom is the special case of the Hom between a chain complex and a cochain complex, with G viewed as a cochain complex concentrated in degree zero. (To make this rigorous, one needs to choose signs in the way similar to the signs in the tensor product of complexes.) For example, if C is the singular chain complex associated to a topological space X, then this is the definition of the singular cohomology of X with coefficients in G.

Now, let f: CC' be a map of chain complexes (for example, it may be induced by a continuous map between topological spaces). Then there is

which in turn determines

If C, C' are singular chain complexes of spaces X, Y, then this is the pullback for singular cohomology theory.

Related Research Articles

In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.

Homological algebra area of mathematics

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. The data can be restricted to smaller open sets, and the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original one. For example, such data can consist of the rings of continuous or smooth real-valued functions defined on each open set. Sheaves are by design quite general and abstract objects, and their correct definition is rather technical. They are variously defined, for example, as sheaves of sets or sheaves of rings, depending on the type of data assigned to open sets.

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

In algebraic topology, a branch of mathematics, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.

In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p + q. This defines an associative graded commutative product operation in cohomology, turning the cohomology of a space X into a graded ring, H(X), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944.

Čech cohomology

In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech.

In algebraic topology, universal coefficient theorems establish relationships between homology and cohomology theories. For instance, the integral homology theory of a topological space X, and its homology with coefficients in any abelian group A are related as follows: the integral homology groups

In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central figure of this study is Alexander Grothendieck and his 1957 Tohuku paper.

In mathematics, and algebraic topology in particular, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group. As such, an Eilenberg–MacLane space is a special kind of topological space that can be regarded as a building block for homotopy theory; general topological spaces can be constructed from these via the Postnikov system. These spaces are important in many contexts in algebraic topology, including constructions of spaces, computations of homotopy groups of spheres, and definition of cohomology operations. The name is for Samuel Eilenberg and Saunders Mac Lane, who introduced such spaces in the late 1940s.

In mathematics, in particular abstract algebra and topology, a differential graded algebra is a graded algebra with an added chain complex structure that respects the algebra structure.

In algebraic topology the cap product is a method of adjoining a chain of degree p with a cochain of degree q, such that qp, to form a composite chain of degree pq. It was introduced by Eduard Čech in 1936, and independently by Hassler Whitney in 1938.

In mathematics, especially in the area of topology known as algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space X to a space Y induces a group homomorphism from the fundamental group of X to the fundamental group of Y.

In mathematics, cohomology with compact support refers to certain cohomology theories, usually with some condition requiring that cocycles should have compact support.

In mathematics, a weak equivalence is a notion from homotopy theory which in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category.

This is a glossary of properties and concepts in algebraic topology in mathematics.

References