Pulsed accretion

Last updated
Artist's impression of a young binary star system at periastron LRLL 54361ab.jpg
Artist's impression of a young binary star system at periastron

In astronomy, Pulsed accretion is the periodic modulation in accretion rate of young stellar objects in binary systems, producing a periodic pulse in the observed infrared light curves of T Tauri stars. [1]

In double stars in young stellar objects, a protoplanetary disk is formed around each star, accreted from nearby matter. In such a binary star system, a strongly eccentric orbit produces strong gravitational forces on the circumstellar disks at periastron, and such disturbance can lead to a temporary increase in the accretion rate onto both stars. [2] Simulations show that the accretion rate is likely to be highly symmetric between stars in nearly equal-mass binary systems but for systems with a mass disparity can be asymmetric. Such asymmetry may be attributable to a high eccentricity circumbinary disk which can accrete material onto the surface of one star at a rate 10-20 times greater than onto the other, with the star that experiences a higher rate of accretion alternating with its companion over large time scales. [2]

This increased accretion rate leads to a change of intensity in the infrared radiation emitted by the stars with such intensity rising by up to tenfold in the protostar LRLL 54361. Brightness changes in the light curve that have the same period as the orbital period of the binary system, are usually assumed to be due to pulsed accretion. [3]

Related Research Articles

<span class="mw-page-title-main">Star formation</span> Process by which dense regions of molecular clouds in interstellar space collapse to form stars

Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. As a branch of astronomy, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations.

Be/X-ray binaries (BeXRBs) are a class of high-mass X-ray binaries that consist of a Be star and a neutron star. The neutron star is usually in a wide highly elliptical orbit around the Be star. The Be stellar wind forms a disk confined to a plane often different from the orbital plane of the neutron star. When the neutron star passes through the Be disk, it accretes a large mass of gas in a short time. As the gas falls onto the neutron star, a bright flare in hard X-rays is seen.

<span class="mw-page-title-main">Nebular hypothesis</span> Astronomical theory about the Solar System

The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System. It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets. The theory was developed by Immanuel Kant and published in his Universal Natural History and Theory of the Heavens (1755) and then modified in 1796 by Pierre Laplace. Originally applied to the Solar System, the process of planetary system formation is now thought to be at work throughout the universe. The widely accepted modern variant of the nebular theory is the solar nebular disk model (SNDM) or solar nebular model. It offered explanations for a variety of properties of the Solar System, including the nearly circular and coplanar orbits of the planets, and their motion in the same direction as the Sun's rotation. Some elements of the original nebular theory are echoed in modern theories of planetary formation, but most elements have been superseded.

<span class="mw-page-title-main">T Tauri</span> Star in constellation Taurus

T Tauri is a variable star in the constellation Taurus, the prototype of the T Tauri stars. It was discovered in October 1852 by John Russell Hind. T Tauri appears from Earth amongst the Hyades cluster, not far from ε Tauri, but it is actually 420 light-years behind it and not a member of the cluster. The cloud to the west of the system is NGC 1555, known more commonly as Hind's Variable Nebula.

X-ray pulsars or accretion-powered pulsars are a class of astronomical objects that are X-ray sources displaying strict periodic variations in X-ray intensity. The X-ray periods range from as little as a fraction of a second to as much as several minutes.

<span class="mw-page-title-main">Beta Trianguli</span> Binary star in the constellation Triangulum

Beta Trianguli is the Bayer designation for a binary star system in the constellation Triangulum, located about 127 light years from Earth. Although it is only a third-magnitude star, it is the brightest star in the constellation Triangulum.

<span class="mw-page-title-main">Bipolar outflow</span> Two continuous flows of gas from the poles of a star

A bipolar outflow comprises two continuous flows of gas from the poles of a star. Bipolar outflows may be associated with protostars, or with evolved post-AGB stars.

<span class="mw-page-title-main">GRO J1655−40</span> Binary star

GRO J1655−40 is a binary star consisting of an evolved F-type primary star and a massive, unseen companion, which orbit each other once every 2.6 days in the constellation of Scorpius. Gas from the surface of the visible star is accreted onto the dark companion, which appears to be a stellar black hole with several times the mass of the Sun. The optical companion of this low-mass X-ray binary is a subgiant F star.

<span class="mw-page-title-main">Circumbinary planet</span> Planet that orbits two stars instead of one

A circumbinary planet is a planet that orbits two stars instead of one. The two stars orbit each other in a binary system, while the planet typically orbits farther from the center of the system than either of the two stars. In contrast, circumstellar planets in a binary system have stable orbits around one of the two stars, closer in than the orbital distance of the other star. Studies in 2013 showed that there is a strong hint that a circumbinary planet and its stars originate from a single disk.

<span class="mw-page-title-main">Kepler-35</span> Binary star system in the constellation Cygnus

Kepler-35 is a binary star system in the constellation of Cygnus. These stars, called Kepler-35A and Kepler-35B have masses of 89% and 81% solar masses respectively, and both are assumed to be of spectral class G. They are separated by 0.176 AU, and complete an eccentric orbit around a common center of mass every 20.73 days.

<span class="mw-page-title-main">LRLL 54361</span> Star in the constellation Perseus

LRLL 54361 also known as L54361 is thought to be a binary protostar producing strobe-like flashes, located in the constellation Perseus in the star-forming region IC 348 and 950 light-years away.

<span class="mw-page-title-main">Circumstellar disc</span> Accumulation of matter around a star

A circumstellar disc is a torus, pancake or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are the reservoirs of material out of which planets may form. Around mature stars, they indicate that planetesimal formation has taken place, and around white dwarfs, they indicate that planetary material survived the whole of stellar evolution. Such a disc can manifest itself in various ways.

<span class="mw-page-title-main">GG Tauri</span> Star in the constellation Taurus

GG Tauri, often abbreviated as GG Tau, is a quintuple star system in the constellation Taurus. At a distance of about 450 light years away, it is located within the Taurus-Auriga Star Forming Region. The system comprises three stars orbiting each other in a hierarchical triple system, known as GG Tauri A, and another binary star system more distant from the central system, known as GG Tauri B.

<span class="mw-page-title-main">IRAS 08544−4431</span> Variable star in the constellation Vela

IRAS 08544−4431 is a binary system surrounded by a dusty ring in the constellation of Vela. The system contains an RV Tauri variable star and a more massive but much less luminous companion.

<span class="mw-page-title-main">KH 15D</span> Binary star system in the constellation Monoceros

KH 15D, described as a winking star because of its unusual dips in brightness, is a binary T Tauri star system embedded in a circumbinary disk. It is a member of the young open cluster NGC 2264, located about 2,500 light-years (770 pc) from the Sun in the constellation of Monoceros.

<span class="mw-page-title-main">EG Andromedae</span> Binary star system in the constellation Andromeda

EG Andromedae is a symbiotic binary in the constellation Andromeda. Its apparent visual magnitude varies between 6.97 and 7.80.

A Peter Pan disk is a circumstellar disk around a star or brown dwarf that appears to have retained enough gas to form a gas giant planet for much longer than the typically assumed gas dispersal timescale of approximately 5 million years. Several examples of such disks have been observed to orbit stars with spectral types of M or later. The presence of gas around these disks has generally been inferred from the total amount of radiation emitted from the disk at infrared wavelengths, and/or spectroscopic signatures of hydrogen accreting onto the star. To fit one specific definition of a Peter Pan disk, the source needs to have an infrared "color" of , an age of >20 Myr and spectroscopic evidence of accretion.

<span class="mw-page-title-main">AK Scorpii</span> Binary star in the constellation Scorpius

AK Scorpii is a Herbig Ae/Be star and spectroscopic binary star about 459 light-years distant in the constellation Scorpius. The star belongs to the nearby Upper Centaurus–Lupus star-forming region and the star is actively accreting material. The binary is surrounded by a circumbinary disk that was imaged with VLT/SPHERE in scattered light and with ALMA.

<span class="mw-page-title-main">RW Aurigae</span> Young binary star system in the constellation Auriga

RW Aurigae is a young binary system in the constellation of Auriga about 530 light years away, belonging to the Taurus-Auriga association of the Taurus Molecular Cloud. RW Aurigae B was discovered in 1944.

<span class="mw-page-title-main">GV Tauri</span> Young binary star system in the constellation of Taurus

GK Tauri is a young binary system composed of T Tauri-type pre-main sequence stars in the constellation of Taurus about 466 light years away, belonging to the Taurus Molecular Cloud.

References

  1. Jensen, Eric L. N.; et al. (2007), "Periodic Accretion from a Circumbinary Disk in the Young Binary UZ Tau E", The Astronomical Journal (in German), vol. 134, no. 1, pp. 241–251, arXiv: 0704.0307 , doi:10.1086/518408
  2. 1 2 Muñoz, Diego J.; Lai, Dong (August 2016). "PULSED ACCRETION ONTO ECCENTRIC AND CIRCULAR BINARIES". The Astrophysical Journal. 827 (1): 43. arXiv: 1604.00004 . doi:10.3847/0004-637X/827/1/43. ISSN   0004-637X.
  3. Muzerolle, James; et al. (2013), "Pulsed Accretion in a Variable Protostar", Astrophysics. Solar and Stellar Astrophysics (in German), arXiv: 1301.5921