Pyrotol catalyst

Last updated

Pyrotol is a catalyst used in the industrial production of benzene through a process known as pyrolysis. It is a proprietary chromium-alumina catalyst manufactured by Clariant International (formerly known as Sud-Chemie) and licensed exclusively to CB&I Lummus Technology, Inc. It is completely unrelated to the explosive pyrotol.


Related Research Articles

<span class="mw-page-title-main">Catalysis</span> Process of increasing the rate of a chemical reaction

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst. Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quickly, very small amounts of catalyst often suffice; mixing, surface area, and temperature are important factors in reaction rate. Catalysts generally react with one or more reactants to form intermediates that subsequently give the final reaction product, in the process of regenerating the catalyst.

<span class="mw-page-title-main">Hoechst AG</span> German chemicals company

Hoechst AG was a German chemicals then life-sciences company that became Aventis Deutschland after its merger with France's Rhône-Poulenc S.A. in 1999. With the new company's 2004 merger with Sanofi-Synthélabo, it became a subsidiary of the resulting Sanofi-Aventis pharmaceuticals group.

<span class="mw-page-title-main">Hydrogenation</span> Chemical reaction between molecular hydrogen and another compound or element

Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene. Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures. Hydrogenation reduces double and triple bonds in hydrocarbons.

<span class="mw-page-title-main">Catalytic converter</span> Exhaust emission control device

A catalytic converter is an exhaust emission control device that converts toxic gases and pollutants in exhaust gas from an internal combustion engine into less-toxic pollutants by catalyzing a redox reaction. Catalytic converters are usually used with internal combustion engines fueled by gasoline or diesel, including lean-burn engines, and sometimes on kerosene heaters and stoves.

<span class="mw-page-title-main">Cracking (chemistry)</span> Process whereby complex organic molecules are broken down into simpler molecules

In petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon-carbon bonds in the precursors. The rate of cracking and the end products are strongly dependent on the temperature and presence of catalysts. Cracking is the breakdown of a large hydrocarbons into smaller, more useful alkanes and alkenes. Simply put, hydrocarbon cracking is the process of breaking a long chain of hydrocarbons into short ones. This process requires high temperatures.

<span class="mw-page-title-main">Hopcalite</span> Catalyst to oxidise carbon monoxide at room temperature

Hopcalite is the trade name for a number of mixtures that mainly consist of oxides of copper and manganese, which are used as catalysts for the conversion of carbon monoxide to carbon dioxide when exposed to the oxygen in the air at room temperature.

The Fischer–Tropsch process is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen, known as syngas, into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The Fischer–Tropsch process is an important reaction in both coal liquefaction and gas to liquids technology for producing liquid hydrocarbons.

Huntsman Corporation is an American multinational manufacturer and marketer of chemical products for consumers and industrial customers. Huntsman manufactures assorted polyurethanes, performance products, and adhesives for customers like BMW, GE, Chevron, Procter & Gamble, Unilever and Walkaroo. With global headquarters in The Woodlands, Texas, it operates more than 70 manufacturing, R&D and operations facilities in over 30 countries and employ approximately 9,000 associates across four business divisions. Huntsman Corporation had 2020 revenues of approximately $6 billion.

<span class="mw-page-title-main">Dimethoxyethane</span> Chemical compound

Dimethoxyethane, also known as glyme, monoglyme, dimethyl glycol, ethylene glycol dimethyl ether, dimethyl cellosolve, and DME, is a colorless, aprotic, and liquid ether that is used as a solvent, especially in batteries. Dimethoxyethane is miscible with water.

<span class="mw-page-title-main">Raney nickel</span> Chemical compound

Raney nickel, also called spongy nickel, is a fine-grained solid composed mostly of nickel derived from a nickel–aluminium alloy. Several grades are known, of which most are gray solids. Some are pyrophoric, but most are used as air-stable slurries. Raney nickel is used as a reagent and as a catalyst in organic chemistry. It was developed in 1926 by American engineer Murray Raney for the hydrogenation of vegetable oils. Raney is a registered trademark of W. R. Grace and Company. Other major producers are Evonik and Johnson Matthey.

<span class="mw-page-title-main">Catalytic cycle</span> Multistep reaction mechanism involving a catalyst

In chemistry, a catalytic cycle is a multistep reaction mechanism that involves a catalyst. The catalytic cycle is the main method for describing the role of catalysts in biochemistry, organometallic chemistry, bioinorganic chemistry, materials science, etc.

<span class="mw-page-title-main">Fluid catalytic cracking</span> Petroleum conversion process

Fluid Catalytic Cracking (FCC) is the conversion process used in petroleum refineries to convert the high-boiling point, high-molecular weight hydrocarbon fractions of petroleum into gasoline, alkene gases, and other petroleum products. The cracking of petroleum hydrocarbons was originally done by thermal cracking, now virtually replaced by catalytic cracking, which yields greater volumes of high octane rating gasoline; and produces by-product gases, with more carbon-carbon double bonds, that are of greater economic value than the gases produced by thermal cracking.

<span class="mw-page-title-main">Clariant</span>

Clariant AG is a Swiss multinational speciality chemicals company, formed in 1995 as a spin-off from Sandoz. Headquartered in Muttenz, Switzerland, the public company encompasses 74 subsidiaries in 36 countries (2022). Major manufacturing sites are located in Europe, North America, South America, China, and India. In 2022, sales from continuing operations were 5.198 billion CHF.

Alfa Aesar, headquartered in Ward Hill, Massachusetts, United States, is a supplier of reagents and materials for use in research and development, and analysis. They have facilities in many countries and manufacture many of the chemicals they sell.

<span class="mw-page-title-main">Clariant Chemicals India</span>

Clariant Chemicals India Ltd is a specialty chemicals manufacturing company from the Indian state of Maharashtra. The India office is headquartered in Thane. The main business activity of Clariant Chemicals (India) involves manufacture of specialty chemicals for domestic and industrial use. It manufactures and markets textiles, leather, paints, plastic, printing inks, and agrochemicals products in India. It has presence in many international markets. The company also ran a pigments business which was integrated into the Heubach Group.

Kolshet is located in Thane.

Avient Corporation is a global manufacturer of specialized polymer materials headquartered in Avon Lake, Ohio. Its products include thermoplastic compounds, plastic colorants and additives, thermoplastic resins, vinyl resins, thermoplastic composites and specialty thermoset composite materials.

Speciality chemicals are particular chemical products which provide a wide variety of effects on which many other industry sectors rely. Some of the categories of speciality chemicals are adhesives, agrichemicals, cleaning materials, colors, cosmetic additives, construction chemicals, elastomers, flavors, food additives, fragrances, industrial gases, lubricants, paints, polymers, surfactants, and textile auxiliaries. Other industrial sectors such as automotive, aerospace, food, cosmetics, agriculture, manufacturing, and textiles are highly dependent on such products.

<span class="mw-page-title-main">Aluminium diethyl phosphinate</span> Chemical compound

Aluminium diethyl phosphinate is a chemical compound with formula Al(C
4
H
10
O
2
P
)3. It decomposes above 300 °C.

<span class="mw-page-title-main">Bleach activator</span>

Bleach activators are compounds that allow a lower washing temperature than would be required otherwise to achieve the full activity of bleaching agents in the wash liquor. Bleaching agents, usually peroxides, are usually sufficiently active only at 60 °C and up. With bleach activators, this activity can be achieved at lower temperatures. Bleach activators are included in some laundry detergent powders, some laundry additive powders, and a few laundry additive pods. They are not included in any liquid laundry detergents. Bleach activators react with hydrogen peroxide in aqueous solution to form peroxy acids. Peroxy acids are more active bleaches than hydrogen peroxide at lower temperatures (<60 °C), but are too unstable to be stored in their active form, and hence must be generated in situ.