Q-guidance

Last updated

Q-guidance is a method of missile guidance used in some U.S. ballistic missiles and some civilian space flights. It was developed in the 1950s by J. Halcombe Laning and Richard Battin at the MIT Instrumentation Lab.

Contents

Q-guidance is used for missiles whose trajectory consists of a relatively short boost phase (or powered phase) during which the missile's propulsion system operates, followed by a ballistic phase during which the missile coasts to its target under the influence of gravity. (Cruise missiles use different guidance methods). The objective of Q-guidance is to hit a specified target at a specified time (if there is some flexibility as to the time the target should be hit then other types of guidance can be used).

Early Implementations

At the time Q-guidance was developed the main competitive method was called Delta-guidance. According to Mackenzie, [1] Titan, some versions of Atlas, Minuteman I and II used Delta-guidance, while Q-guidance was used for Thor IRBM and Polaris, and presumably Poseidon. It appears, from monitoring of test launches, that early Soviet ICBMs used a variant of Delta-guidance.

Delta-guidance overview

Delta-guidance is based on adherence to a planned reference trajectory, which is developed before the flight using ground-based computers and stored in the missile's guidance system. In flight, the actual trajectory is modeled mathematically as a Taylor series expansion around the reference trajectory. The guidance system attempts to zero the linear terms of this expression, i.e. to bring the missile back to the planned trajectory. For this reason, Delta-guidance is sometimes referred to as "fly [along] the wire", where the (imaginary) wire refers to the reference trajectory. [1]

In contrast, Q-guidance is a dynamic method, reminiscent of the theories dynamic programming or state based feedback. In essence, it says "never mind where we were supposed to be, given where we are what should we do to make progress towards the goal of reaching the required target at the required time". To do this it relies on the concept of "velocity to be gained".

Velocity To Be Gained

At a given time t and for a given vehicle position r, the correlated velocity vector Vc is defined as follows: if the vehicle had the velocity Vc and the propulsion system was turned off, then the missile would reach the desired target at the desired time under the influence of gravity. In some sense, Vc is the desired velocity.

The actual velocity of the missile is denoted by Vm and the missile is subject to both the acceleration due to gravity g and that due to the engines aT. The velocity to be gained is defined as the difference between Vc and Vm:

A simple guidance strategy is to apply acceleration (i.e. engine thrust) in the direction of VTBG. This will have the effect of making the actual velocity come closer to Vc. When they become equal (i.e. when VTBG becomes identically zero) it is time to shut off the engines, since the missile is by definition able to reach the desired target at the desired time on its own.

The only remaining issue is how to compute VTBG easily from information available on board the vehicle.

The Q Matrix

A remarkably simple differential equation can be used to compute the velocity to be gained:

where the Q matrix is defined by

where Q is a symmetric 3 by 3 time-varying matrix. (The vertical bar refers to the fact that the derivative must be evaluated for a given target position rT and time of free flight tf.) [2] The calculation of this matrix is non-trivial, but can be performed offline before the flight; experience shows that the matrix is only slowly time varying, so only a few values of Q corresponding to different times during the flight need to be stored on board the vehicle.

In early applications the integration of the differential equation was performed using analog hardware, rather than a digital computer. Information about vehicle acceleration, velocity and position is supplied by the onboard Inertial measurement unit.

Cross Product Steering

A reasonable strategy to gradually align the thrust vector to the VTBG vector is to steer at a rate proportional to the cross product between them. A simple control strategy that does this is to steer at the rate

where is a constant. This implicitly assumes that VTBG remains roughly constant during the maneuver. A somewhat more clever strategy can be designed that takes into account the rate of time change of VTBG as well, since this is available from the differential equation above.

This second control strategy is based on Battin's insight [3] that "If you want to drive a vector to zero, it is [expedient] to align the time rate of change of the vector with the vector itself". This suggests setting the auto-pilot steering rate to

Either of these methods are referred to as cross-product steering, and they are easy to implement in analog hardware.

Finally, when all components of VTBG are small, the order to cut-off engine power can be given.

Related Research Articles

Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

A projectile is any object thrown by the exertion of a force. It can also be defined as an object launched into the space and allowed to move free under the influence of gravity and air resistance. Although any object in motion through space may be called projectiles, they are commonly found in warfare and sports. Mathematical equations of motion are used to analyze projectile trajectories.

Work (physics) Process of energy transfer to an object via force application through displacement

In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, it is often represented as the product of force and displacement. A force is said to do positive work if it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.

Geostationary transfer orbit

A geosynchronous transfer orbit or geostationary transfer orbit (GTO) is a type of geocentric orbit. Satellites which are destined for geosynchronous (GSO) or geostationary orbit (GEO) are (almost) always put into a GTO as an intermediate step for reaching their final orbit.

Orbital mechanics Field of classical mechanics concerned with the motion of spacecraft

Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control.

A guidance system is a virtual or physical device, or a group of devices implementing a controlling the movement of a ship, aircraft, missile, rocket, satellite, or any other moving object. Guidance is the process of calculating the changes in position, velocity, altitude, and/or rotation rates of a moving object required to follow a certain trajectory and/or altitude profile based on information about the object's state of motion.

Rigid body dynamics

In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.

Frenet–Serret formulas

In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a continuous, differentiable curve in three-dimensional Euclidean space R3, or the geometric properties of the curve itself irrespective of any motion. More specifically, the formulas describe the derivatives of the so-called tangent, normal, and binormal unit vectors in terms of each other. The formulas are named after the two French mathematicians who independently discovered them: Jean Frédéric Frenet, in his thesis of 1847, and Joseph Alfred Serret in 1851. Vector notation and linear algebra currently used to write these formulas were not yet in use at the time of their discovery.

Verlet integration is a numerical method used to integrate Newton's equations of motion. It is frequently used to calculate trajectories of particles in molecular dynamics simulations and computer graphics. The algorithm was first used in 1791 by Delambre and has been rediscovered many times since then, most recently by Loup Verlet in the 1960s for use in molecular dynamics. It was also used by Cowell and Crommelin in 1909 to compute the orbit of Halley's Comet, and by Carl Størmer in 1907 to study the trajectories of electrical particles in a magnetic field . The Verlet integrator provides good numerical stability, as well as other properties that are important in physical systems such as time reversibility and preservation of the symplectic form on phase space, at no significant additional computational cost over the simple Euler method.

Orbital state vectors

In astrodynamics and celestial dynamics, the orbital state vectors of an orbit are Cartesian vectors of position and velocity that together with their time (epoch) uniquely determine the trajectory of the orbiting body in space.

In spaceflight, an orbital maneuver is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth an orbital maneuver is called a deep-space maneuver (DSM).

Screw theory Mathematical formulation of vector pairs used in physics (rigid body dynamics)

Screw theory is the algebraic calculation of pairs of vectors, such as forces and moments or angular and linear velocity, that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was developed by Sir Robert Stawell Ball in 1876 for application in kinematics and statics of mechanisms.

Flight dynamics (spacecraft) Application of mechanical dynamics to model the flight of space vehicles

Spacecraft flight dynamics is the application of mechanical dynamics to model how the external forces acting on a space vehicle or spacecraft determine its flight path. These forces are primarily of three types: propulsive force provided by the vehicle's engines; gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag.

Proportional navigation

Proportional navigation is a guidance law used in some form or another by most homing air target missiles. It is based on the fact that two vehicles are on a collision course when their direct Line-of-Sight does not change direction as the range closes. PN dictates that the missile velocity vector should rotate at a rate proportional to the rotation rate of the line of sight, and in the same direction.

Space-time adaptive processing

Space-time adaptive processing (STAP) is a signal processing technique most commonly used in radar systems. It involves adaptive array processing algorithms to aid in target detection. Radar signal processing benefits from STAP in areas where interference is a problem. Through careful application of STAP, it is possible to achieve order-of-magnitude sensitivity improvements in target detection.

A gravity turn or zero-lift turn is a maneuver used in launching a spacecraft into, or descending from, an orbit around a celestial body such as a planet or a moon. It is a trajectory optimization that uses gravity to steer the vehicle onto its desired trajectory. It offers two main advantages over a trajectory controlled solely through the vehicle's own thrust. First, the thrust is not used to change the spacecraft's direction, so more of it is used to accelerate the vehicle into orbit. Second, and more importantly, during the initial ascent phase the vehicle can maintain low or even zero angle of attack. This minimizes transverse aerodynamic stress on the launch vehicle, allowing for a lighter launch vehicle.

Guidance, navigation and control is a branch of engineering dealing with the design of systems to control the movement of vehicles, especially, automobiles, ships, aircraft, and spacecraft. In many cases these functions can be performed by trained humans. However, because of the speed of, for example, a rocket's dynamics, human reaction time is too slow to control this movement. Therefore, systems—now almost exclusively digital electronic—are used for such control. Even in cases where humans can perform these functions, it is often the case that GNC systems provide benefits such as alleviating operator work load, smoothing turbulence, fuel savings, etc. In addition, sophisticated applications of GNC enable automatic or remote control.

Inertial navigation system

An inertial navigation system (INS) is a navigation device that uses a computer, motion sensors (accelerometers) and rotation sensors (gyroscopes) to continuously calculate by dead reckoning the position, the orientation, and the velocity of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and sometimes by magnetic sensors (magnetometers) and/or speed measuring devices. INSs are used on mobile robots and on vehicles such as ships, aircraft, submarines, guided missiles, and spacecraft. Other terms used to refer to inertial navigation systems or closely related devices include inertial guidance system, inertial instrument, inertial measurement unit (IMU) and many other variations. Older INS systems generally used an inertial platform as their mounting point to the vehicle and the terms are sometimes considered synonymous.

Chaotic mixing

In chaos theory and fluid dynamics, chaotic mixing is a process by which flow tracers develop into complex fractals under the action of a fluid flow. The flow is characterized by an exponential growth of fluid filaments. Even very simple flows, such as the blinking vortex, or finitely resolved wind fields can generate exceptionally complex patterns from initially simple tracer fields.

The Monte Carlo method for electron transport is a semiclassical Monte Carlo(MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics. The scattering events and the duration of particle flight is determined through the use of random numbers.

References

  1. 1 2 Mackenzie: Inventing Accuracy
  2. Battin: Introduction
  3. Battin: An Introduction