QT interval variability

Last updated

QT interval variability (QTV) refers to the physiological phenomenon of beat-to-beat fluctuations in QT interval of electrocardiograms. Increased QTV appears to be a marker of arrhythmic and cardiovascular death; it may also play a role for noninvasive assessment of sympathetic nervous system activity. [1]

Contents

Other terms used include: "QT variability", "beat-to-beat variability of ventricular repolarization (BRV)"

Beat-to-beat measurement of QT interval using two-dimensional signal warping (2DSW). 2DSW concept schematic (Two-dimensional signal warping).svg
Beat-to-beat measurement of QT interval using two-dimensional signal warping (2DSW).

QT interval measurement

Under normal resting conditions, beat-to-beat changes in QT interval are very small with a standard deviation typically below 5 ms. Digital high resolution ECG sampled at 300 Hz or higher and dedicated computer algorithms are required for QTV assessment. [2] Template-based algorithms that use parts of, or the entire ECG waveform usually deliver good results; [3] template stretching or warping techniques [4] perform comparably well in the presence of noise.

QTV Analysis

A number of metrics have been proposed for QTV quantification. The QT variability index (QTVi) has been most frequently reported in the literature: , where , , , and denote standard deviation and mean of QT interval and heart rate time series, respectively. [5]

More advanced approaches that take into account the relationship between QTV and heart rate variability include vector autoregressive process models [6] and information domain approaches. [7]

Example traces of heart rate and QT interval variability in a normal heart and after myocardial infarction. Example traces of heart rate and QT interval variability in a normal heart and after myocardial infraction.png
Example traces of heart rate and QT interval variability in a normal heart and after myocardial infarction.

References

  1. Baumert, Mathias; Porta, Alberto; Vos, Marc A.; Malik, Marek; Couderc, Jean-Philippe; Laguna, Pablo; Piccirillo, Gianfranco; Smith, Godfrey L.; Tereshchenko, Larisa G.; Volders, Paul G.A. (June 2016). "QT interval variability in body surface ECG: measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESC Working Group on Cardiac Cellular Electrophysiology". Europace. 18 (6): 925–944. doi:10.1093/europace/euv405. PMC   4905605 . PMID   26823389.
  2. Baumert, Mathias; Schmidt, Martin; Zaunseder, Sebastian; Porta, Alberto (2016-03-01). "Effects of ECG sampling rate on QT interval variability measurement". Biomedical Signal Processing and Control. 25: 159–164. doi:10.1016/j.bspc.2015.11.011. ISSN   1746-8094.
  3. Baumert, Mathias; Starc, Vito; Porta, Alberto (2012-07-30). "Conventional QT Variability Measurement vs. Template Matching Techniques: Comparison of Performance Using Simulated and Real ECG". PLOS ONE. 7 (7): e41920. doi: 10.1371/journal.pone.0041920 . ISSN   1932-6203. PMC   3408402 . PMID   22860030.
  4. "2DSW – Two-Dimensional Signal Warping (2DSW)". 2dsw.com. Retrieved 2017-12-01.
  5. Berger, Ronald D.; Kasper, Edward K.; Baughman, Kenneth L.; Marban, Eduardo; Calkins, Hugh; Tomaselli, Gordon F. (1997-09-02). "Beat-to-Beat QT Interval Variability: Novel Evidence for Repolarization Lability in Ischemic and Nonischemic Dilated Cardiomyopathy". Circulation. 96 (5): 1557–1565. doi:10.1161/01.cir.96.5.1557. ISSN   0009-7322. PMID   9315547.
  6. Porta, A.; Baselli, G.; Caiani, E.; Malliani, A.; Lombardi, F.; Cerutti, S. (1998-01-01). "Quantifying electrocardiogram RT-RR variability interactions". Medical and Biological Engineering and Computing. 36 (1): 27–34. doi:10.1007/bf02522854. ISSN   0140-0118. PMID   9614745. S2CID   26095975.
  7. Porta, Alberto; Bari, Vlasta; Maria, Beatrice De; Baumert, Mathias (2017). "A network physiology approach to the assessment of the link between sinoatrial and ventricular cardiac controls". Physiological Measurement. 38 (7): 1472–1489. doi:10.1088/1361-6579/aa6e95. PMID   28430108. S2CID   3435105.