RMON

Last updated

The Remote Network Monitoring (RMON) MIB was developed by the IETF to support monitoring and protocol analysis of local area networks (LANs). The original version (sometimes referred to as RMON1) focused on OSI layer 1 and layer 2 information in Ethernet and Token Ring networks. It has been extended by RMON2 which adds support for Network- and Application-layer monitoring and by SMON which adds support for switched networks. It is an industry-standard specification that provides much of the functionality offered by proprietary network analyzers. RMON agents are built into many high-end switches and routers.

Contents

Overview

Remote Monitoring (RMON) is a standard monitoring specification that enables various network monitors and console systems to exchange network-monitoring data. RMON provides network administrators with more freedom in selecting network-monitoring probes and consoles with features that meet their particular networking needs. An RMON implementation typically operates in a client/server model. Monitoring devices (commonly called "probes" in this context) contain RMON software agents that collect information and analyze packets. These probes act as servers and the Network Management applications that communicate with them act as clients. While both agent configuration and data collection use SNMP, RMON is designed to operate differently than other SNMP-based systems:

In short, RMON is designed for "flow-based" monitoring, while SNMP is often used for "device-based" management. RMON is similar to other flow-based monitoring technologies such as NetFlow and SFlow because the data collected deals mainly with traffic patterns rather than the status of individual devices. One disadvantage of this system is that remote devices shoulder more of the management burden, and require more resources to do so. Some devices balance this trade-off by implementing only a subset of the RMON MIB groups (see below). A minimal RMON agent implementation could support only statistics, history, alarm, and event.

The RMON1 MIB consists of ten groups:

  1. Statistics: real-time LAN statistics e.g. utilization, collisions, CRC errors
  2. History: history of selected statistics
  3. Alarm: definitions for RMON SNMP traps to be sent when statistics exceed defined thresholds
  4. Hosts: host specific LAN statistics e.g. bytes sent/received, frames sent/received
  5. Hosts top N: record of N most active connections over a given time period
  6. Matrix: the sent-received traffic matrix between systems
  7. Filter: defines packet data patterns of interest e.g. MAC address or TCP port
  8. Capture: collect and forward packets matching the Filter
  9. Event: send alerts (SNMP traps) for the Alarm group
  10. Token Ring: extensions specific to Token Ring

The RMON2 MIB adds ten more groups:

  1. Protocol Directory: list of protocols the probe can monitor
  2. Protocol Distribution: traffic statistics for each protocol
  3. Address Map: maps network-layer (IP) to MAC-layer addresses
  4. Network-Layer Host: layer 3 traffic statistics, per each host
  5. Network-Layer Matrix: layer 3 traffic statistics, per source/destination pairs of hosts
  6. Application-Layer Host: traffic statistics by application protocol, per host
  7. Application-Layer Matrix: traffic statistics by application protocol, per source/destination pairs of hosts
  8. User History: periodic samples of user-specified variables
  9. Probe Configuration: remote configure of probes
  10. RMON Conformance: requirements for RMON2 MIB conformance

Important RFCs

See also

Related Research Articles

A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.

Simple Network Management Protocol (SNMP) is an Internet Standard protocol for collecting and organizing information about managed devices on IP networks and for modifying that information to change device behavior. Devices that typically support SNMP include cable modems, routers, switches, servers, workstations, printers, and more.

The Address Resolution Protocol (ARP) is a communication protocol used for discovering the link layer address, such as a MAC address, associated with a given internet layer address, typically an IPv4 address. This mapping is a critical function in the Internet protocol suite. ARP was defined in 1982 by RFC 826, which is Internet Standard STD 37.

<span class="mw-page-title-main">Network address translation</span> Protocol facilitating connection of one IP address space to another

Network address translation (NAT) is a method of mapping an IP address space into another by modifying network address information in the IP header of packets while they are in transit across a traffic routing device. The technique was originally used to bypass the need to assign a new address to every host when a network was moved, or when the upstream Internet service provider was replaced, but could not route the network's address space. It has become a popular and essential tool in conserving global address space in the face of IPv4 address exhaustion. One Internet-routable IP address of a NAT gateway can be used for an entire private network.

<span class="mw-page-title-main">Packet analyzer</span> Computer network equipment or software that analyzes network traffic

A packet analyzer, also known as packet sniffer, protocol analyzer, or network analyzer, is a computer program or computer hardware such as a packet capture appliance that can analyze and log traffic that passes over a computer network or part of a network. Packet capture is the process of intercepting and logging traffic. As data streams flow across the network, the analyzer captures each packet and, if needed, decodes the packet's raw data, showing the values of various fields in the packet, and analyzes its content according to the appropriate RFC or other specifications.

An application layer is an abstraction layer that specifies the shared communication protocols and interface methods used by hosts in a communications network. An application layer abstraction is specified in both the Internet Protocol Suite (TCP/IP) and the OSI model. Although both models use the same term for their respective highest-level layer, the detailed definitions and purposes are different.

A multilayer switch (MLS) is a computer networking device that switches on OSI layer 2 like an ordinary network switch and provides extra functions on higher OSI layers. The MLS was invented by engineers at Digital Equipment Corporation.

FCAPS is the ISO Telecommunications Management Network model and framework for network management. FCAPS is an acronym for fault, configuration, accounting, performance, security, the management categories into which the ISO model defines network management tasks. In non-billing organizations accounting is sometimes replaced with administration.

The Common Management Information Protocol (CMIP) is the OSI specified network management protocol.

A management information base (MIB) is a database used for managing the entities in a communication network. Most often associated with the Simple Network Management Protocol (SNMP), the term is also used more generically in contexts such as in OSI/ISO Network management model. While intended to refer to the complete collection of management information available on an entity, it is often used to refer to a particular subset, more correctly referred to as MIB-module.

<span class="mw-page-title-main">NetFlow</span> Communications protocol

NetFlow is a feature that was introduced on Cisco routers around 1996 that provides the ability to collect IP network traffic as it enters or exits an interface. By analyzing the data provided by NetFlow, a network administrator can determine things such as the source and destination of traffic, class of service, and the causes of congestion. A typical flow monitoring setup consists of three main components:

A network tap is a system that monitors events on a local network. A tap is typically a dedicated hardware device, which provides a way to access the data flowing across a computer network.

sFlow, short for "sampled flow", is an industry standard for packet export at Layer 2 of the OSI model. sFlow was originally developed by InMon Corp. It provides a means for exporting truncated packets, together with interface counters for the purpose of network monitoring. Maintenance of the protocol is performed by the sFlow.org consortium, the authoritative source of the sFlow protocol specifications. The current version of sFlow is v5.

lwIP is a widely used open-source TCP/IP stack designed for embedded systems. lwIP was originally developed by Adam Dunkels at the Swedish Institute of Computer Science and is now developed and maintained by a worldwide network of developers.

<span class="mw-page-title-main">NETCONF</span> Network management protocol

The Network Configuration Protocol (NETCONF) is a network management protocol developed and standardized by the IETF. It was developed in the NETCONF working group and published in December 2006 as RFC 4741 and later revised in June 2011 and published as RFC 6241. The NETCONF protocol specification is an Internet Standards Track document.

The Link Layer Discovery Protocol (LLDP) is a vendor-neutral link layer protocol used by network devices for advertising their identity, capabilities, and neighbors on a local area network based on IEEE 802 technology, principally wired Ethernet. The protocol is formally referred to by the IEEE as Station and Media Access Control Connectivity Discovery specified in IEEE 802.1AB with additional support in IEEE 802.3 section 6 clause 79.

In computer networks, network traffic measurement is the process of measuring the amount and type of traffic on a particular network. This is especially important with regard to effective bandwidth management.

An application delivery network (ADN) is a suite of technologies that, when deployed together, provide availability, security, visibility, and acceleration for Internet applications such as websites. ADN components provide supporting functionality that enables website content to be delivered to visitors and other users of that website, in a fast, secure, and reliable way.

Yet Another Next Generation is a data modeling language for the definition of data sent over network management protocols such as the NETCONF and RESTCONF. The YANG data modeling language is maintained by the NETMOD working group in the Internet Engineering Task Force (IETF) and initially was published as RFC 6020 in October 2010, with an update in August 2016. The data modeling language can be used to model both configuration data as well as state data of network elements. Furthermore, YANG can be used to define the format of event notifications emitted by network elements and it allows data modelers to define the signature of remote procedure calls that can be invoked on network elements via the NETCONF protocol. The language, being protocol independent, can then be converted into any encoding format, e.g. XML or JSON, that the network configuration protocol supports.

The Stream Control Transmission Protocol (SCTP) is a computer networking communications protocol in the transport layer of the Internet protocol suite. Originally intended for Signaling System 7 (SS7) message transport in telecommunication, the protocol provides the message-oriented feature of the User Datagram Protocol (UDP), while ensuring reliable, in-sequence transport of messages with congestion control like the Transmission Control Protocol (TCP). Unlike UDP and TCP, the protocol supports multihoming and redundant paths to increase resilience and reliability.