RNA helicase database

Last updated
RNA helicase database.
Database.png
Content
Description RNA helicase database.
Contact
Research center Case Western Reserve University
LaboratoryDepartment of Biochemistry, Center for RNA Molecular Biology
AuthorsAnja Jankowsky
Primary citationJankowsky & al. (2011) [1]
Release date2010

The RNA helicase database stored data about RNA helicases. [1] The URL referenced in the article has been invalid since at least December 31st 2017. [2]

See also

Related Research Articles

DNA primase is an enzyme involved in the replication of DNA and is a type of RNA polymerase. Primase catalyzes the synthesis of a short RNA segment called a primer complementary to a ssDNA template. After this elongation, the RNA piece is removed by a 5' to 3' exonuclease and refilled with DNA.

<span class="mw-page-title-main">Helicase</span> Class of enzymes to unpack an organisms genes

Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separating two hybridized nucleic acid strands, using energy from ATP hydrolysis. There are many helicases, representing the great variety of processes in which strand separation must be catalyzed. Approximately 1% of eukaryotic genes code for helicases.

<span class="mw-page-title-main">Rho factor</span> Prokaryotic protein

A ρ factor is a bacterial protein involved in the termination of transcription. Rho factor binds to the transcription terminator pause site, an exposed region of single stranded RNA after the open reading frame at C-rich/G-poor sequences that lack obvious secondary structure.

<i>Tombusviridae</i> Family of viruses

Tombusviridae is a family of single-stranded positive sense RNA plant viruses. There are three subfamilies, 17 genera, and 95 species in this family. The name is derived from Tomato bushy stunt virus (TBSV).

<i>Nidovirales</i> Order of positive-sense, single-stranded RNA viruses

Nidovirales is an order of enveloped, positive-strand RNA viruses which infect vertebrates and invertebrates. Host organisms include mammals, birds, reptiles, amphibians, fish, arthropods, molluscs, and helminths. The order includes the families Coronaviridae, Arteriviridae, Roniviridae,Tobaniviridae, and Mesoniviridae.

<span class="mw-page-title-main">TRAMP complex</span>

TRAMP complex is a multiprotein, heterotrimeric complex having distributive polyadenylation activity and identifies wide varieties of RNAs produced by polymerases. It was originally discovered in Saccharomycescerevisiae by LaCava et al., Vanacova et al. and Wyers et al. in 2005.

<span class="mw-page-title-main">DEAD box</span> Family of proteins

DEAD box proteins are involved in an assortment of metabolic processes that typically involve RNAs, but in some cases also other nucleic acids. They are highly conserved in nine motifs and can be found in most prokaryotes and eukaryotes, but not all. Many organisms, including humans, contain DEAD-box (SF2) helicases, which are involved in RNA metabolism.

<span class="mw-page-title-main">RNA Helicase A</span> Protein-coding gene in the species Homo sapiens

ATP-dependent RNA helicase A is an enzyme that in humans is encoded by the DHX9 gene.

<span class="mw-page-title-main">DDX5</span> Protein-coding gene in Homo sapiens

Probable ATP-dependent RNA helicase DDX5 also known as DEAD box protein 5 or RNA helicase p68 is an enzyme that in humans is encoded by the DDX5 gene.

<span class="mw-page-title-main">DDX17</span> Protein-coding gene in the species Homo sapiens

Probable ATP-dependent RNA helicase DDX17 (p72) is an enzyme that in humans is encoded by the DDX17 gene.

<span class="mw-page-title-main">DDX3X</span> Protein-coding gene in humans

ATP-dependent RNA helicase DDX3X is an enzyme that in humans is encoded by the DDX3X gene.

<span class="mw-page-title-main">EIF4A1</span> Protein coding gene in Humans

Eukaryotic initiation factor 4A-I is a 46 kDa cytosolic protein that, in humans, is encoded by the EIF4A1 gene, which is located on chromosome 17. It is the most prevalent member of the eIF4A family of ATP-dependant RNA helicases, and plays a critical role in the initiation of cap-dependent eukaryotic protein translation as a component of the eIF4F translation initiation complex. eIF4A1 unwinds the secondary structure of RNA within the 5'-UTR of mRNA, a critical step necessary for the recruitment of the 43S preinitiation complex, and thus the translation of protein in eukaryotes. It was first characterized in 1982 by Grifo, et al., who purified it from rabbit reticulocyte lysate.

<span class="mw-page-title-main">DDX21</span> Protein-coding gene in the species Homo sapiens

Nucleolar RNA helicase 2 is an enzyme that in humans is encoded by the DDX21 gene.

<span class="mw-page-title-main">MDA5</span> Mammalian protein found in Homo sapiens

MDA5 is a RIG-I-like receptor dsRNA helicase enzyme that is encoded by the IFIH1 gene in humans. MDA5 is part of the RIG-I-like receptor (RLR) family, which also includes RIG-I and LGP2, and functions as a pattern recognition receptor capable of detecting viruses. It is generally believed that MDA5 recognizes double stranded RNA (dsRNA) over 2000nts in length, however it has been shown that whilst MDA5 can detect and bind to cytoplasmic dsRNA, it is also activated by a high molecular weight RNA complex composed of ssRNA and dsRNA. For many viruses, effective MDA5-mediated antiviral responses are dependent on functionally active LGP2. The signaling cascades in MDA5 is initiated via CARD domain. Some observations made in cancer cells show that MDA5 also interacts with cellular RNA is able to induce an autoinflammatory response.

<span class="mw-page-title-main">SUPV3L1</span> Protein-coding gene in the species Homo sapiens

ATP-dependent RNA helicase SUPV3L1, mitochondrial is an enzyme that in humans is encoded by the SUPV3L1 gene.

<span class="mw-page-title-main">LGP2</span> Protein-coding gene in the species Homo sapiens

Probable ATP-dependent RNA helicase DHX58 also known as RIG-I-like receptor 3 (RLR-3) or RIG-I-like receptor LGP2 (RLR) is a RIG-I-like receptor dsRNA helicase enzyme that in humans is encoded by the DHX58 gene. The protein encoded by the gene DHX58 is known as LGP2.

<span class="mw-page-title-main">DHX15</span> Protein-coding gene in the species Homo sapiens

Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 is an enzyme that in humans is encoded by the DHX15 gene.

The eukaryotic initiation factor-4A (eIF4A) family consists of 3 closely related proteins EIF4A1, EIF4A2, and EIF4A3. These factors are required for the binding of mRNA to 40S ribosomal subunits. In addition these proteins are helicases that function to unwind double-stranded RNA.

<span class="mw-page-title-main">Protein ZGRF1</span> Protein-coding gene in the species Homo sapiens

Protein ZGRF1 is a protein encoded in the human by the ZGRF1 gene also known as C4orf21, that has a weight of 236.6 kDa. The ZGRF1 gene product localizes to the cell nucleus and promotes DNA repair by stimulating homologous recombination. This gene shows relatively low expression in most human tissues, with increased expression in situations of chemical dependence. ZGRF1 is orthologous to nearly all eukaryotes. Functional domains of this protein link it to a series of helicases, most notably the AAA_12 and AAA_11 domains.

ssNA-helicase RNA motif

The ssNA-helicase RNA motif is a conserved RNA structure that was discovered by bioinformatics. Although the ssNA-helicase motif was published as an RNA candidate, there is some reason to suspect that it might function as a single-stranded DNA. In terms of secondary structure, RNA and DNA are difficult to distinguish when only sequence information is available.

References

  1. 1 2 Jankowsky, Anja; Guenther Ulf-Peter; Jankowsky Eckhard (Jan 2011). "The RNA helicase database". Nucleic Acids Res. 39 (Database issue). England: D338-41. doi:10.1093/nar/gkq1002. PMC   3013637 . PMID   21112871.
  2. "Index of /". web.archive.org. 2017-12-31. Retrieved 2024-05-02.