Radiosensitizer

Last updated
Cisplatin, a platinum-based chemotherapeutic and radio sensitizer Cisplatin-stereo.svg
Cisplatin, a platinum-based chemotherapeutic and radio sensitizer

A radiosensitizer is an agent that makes tumor cells more sensitive to radiation therapy. It is sometimes also known as a radiation sensitizer or radio-enhancer.

Contents

Mechanism of action

Conventional chemotherapeutics are currently being used in conjunction with radiation therapy to increase its effectiveness. Examples include the fluoropyrimidines, gemcitabine and platinum analogs; fluoropyrimidines increase sensitivity by dysregulating S-phase cell cycle checkpoints in tumor cells. Gemcitabine progresses through a similar mechanism, causing cells in the S-phase to disrepair DNA damage caused by the radiation. Platinum analogs such as cisplatin inhibit DNA repair by cross linking strands, and so aggravate the effects of DNA damage induced by radiation. [1]

Limitations

One of the major limitations of radiotherapy is that the cells of solid tumors become deficient in oxygen. Solid tumors can outgrow their blood supply, causing a low-oxygen state known as hypoxia. Oxygen is a potent radiosensitizer, increasing the effectiveness of a given dose of radiation by forming DNA-damaging free radicals. Tumor cells in a hypoxic environment may be as much as 2 to 3 times more resistant to radiation damage than those in a normal oxygen environment. [2] Much research has been devoted to overcoming this problem including the use of high pressure oxygen tanks, blood substitutes that carry increased oxygen, hypoxic cell radiosensitizers such as misonidazole and metronidazole, and hypoxic cytotoxins, such as tirapazamine.

Drug development

As of September 2016, there are a number of radiosensitizers in clinical trials.

NameSponsorDescription
NBTXR3 Nanobiotix Also known as PEP503, NBTXR3 is injected via syringe directly into tumors by a surgeon. [3] [4] The drug then creates free radicals when exposed to x-rays. [4] It is composed of hafnium oxide nanoparticles. [3] [5] The company is running four trials on the drug simultaneously. The four trials are a Phase II/III in soft tissue sarcoma of the extremity and trunk wall, [6] a Phase I/II for hepatocellular carcinoma, [7] a Phase I/II for prostate cancer, [8] and a Phase I for squamous cell carcinoma of the oral cavity. [9]
NimoralAzantaThis compound increases the yield of DNA damage from irradiation under hypoxic conditions. Nimoral is in Phase III in Europe as a first-line therapy for squamous cell carcinoma of the head and neck. [10]
Trans Sodium Crocetinate (TSC) Diffusion Pharmaceuticals TSC is meant to increase the diffusion of oxygen through tissue. It was tested in a Phase II clinical trial in glioblastoma (GBM) patients. [11] The results of the Phase II showed that 36% of the full-dose TSC patients were alive at 2 years, compared with historical survival values ranging from 27% to 30% for the standard of care. [12]
NVX-108NuvOx PharmaNVX-108 is an oxygen therapeutic that is injected intravenously, picks up oxygen in the lungs, and delivers oxygen to hypoxic tissue. It is a Phase Ib/II clinical trial where it raises tumor oxygen levels prior to radiation therapy in order to radiosensitize them. [13]

Related Research Articles

Radiation therapy Therapy using ionizing radiation, usually to treat cancer

Radiation therapy or radiotherapy, often abbreviated RT, RTx, or XRT, is a therapy using ionizing radiation, generally provided as part of cancer treatment to control or kill malignant cells and normally delivered by a linear accelerator. Radiation therapy may be curative in a number of types of cancer if they are localized to one area of the body. It may also be used as part of adjuvant therapy, to prevent tumor recurrence after surgery to remove a primary malignant tumor. Radiation therapy is synergistic with chemotherapy, and has been used before, during, and after chemotherapy in susceptible cancers. The subspecialty of oncology concerned with radiotherapy is called radiation oncology. A physician who practices in this subspecialty is a radiation oncologist.

Tumor hypoxia

Tumor hypoxia is the situation where tumor cells have been deprived of oxygen. As a tumor grows, it rapidly outgrows its blood supply, leaving portions of the tumor with regions where the oxygen concentration is significantly lower than in healthy tissues. Hypoxic microenvironements in solid tumors are a result of available oxygen being consumed within 70 to 150 μm of tumour vasculature by rapidly proliferating tumor cells thus limiting the amount of oxygen available to diffuse further into the tumor tissue. In order to support continuous growth and proliferation in challenging hypoxic environments, cancer cells are found to alter their metabolism. Furthermore, hypoxia is known to change cell behavior and is associated with extracellular matrix remodeling and increased migratory and metastatic behavior.

Glioma Tumour of the glial cells of the brain or spine

A glioma is a type of tumor that starts in the glial cells of the brain or the spine. Gliomas comprise about 30 percent of all brain tumors and central nervous system tumours, and 80 percent of all malignant brain tumours.

Glioblastoma Aggressive type of brain cancer

Glioblastoma, previously known as glioblastoma multiforme (GBM), is one of the most aggressive type of cancers that begin within the brain. Initially, signs and symptoms of glioblastoma are nonspecific. They may include headaches, personality changes, nausea, and symptoms similar to those of a stroke. Symptoms often worsen rapidly and may progress to unconsciousness.

This is a list of terms related to oncology. The original source for this list was the US National Cancer Institute's public domain Dictionary of Cancer Terms.

Crocetin Carotenoid Chemical compound

Crocetin is a natural apocarotenoid dicarboxylic acid that is found in the crocus flower together with its glycoside, crocin, and Gardenia jasminoides fruits. It forms brick red crystals with a melting point of 285°C.

Fast neutron therapy

Fast neutron therapy utilizes high energy neutrons typically between 50 and 70 MeV to treat cancer. Most fast neutron therapy beams are produced by reactors, cyclotrons (d+Be) and linear accelerators. Neutron therapy is currently available in Germany, Russia, South Africa and the United States. In the United States, one treatment center is operational, in Seattle, Washington. The Seattle center uses a cyclotron which produces a proton beam impinging upon a beryllium target.

The Danish Head and Neck Cancer (DAHANCA) group was established in 1976 as a working group by the Danish Society for Head and Neck Oncology with the primary aim to develop national guidelines for the treatment of head and neck cancer in Denmark.

Epithelioid sarcoma Medical condition

Epithelioid sarcoma is a rare soft tissue sarcoma arising from mesenchymal tissue and characterized by epithelioid-like features. It accounts for less than 1% of all soft tissue sarcomas. It was first clearly characterized by F.M. Enzinger in 1970. It commonly presents itself in the distal limbs of young adults as a small, soft mass or a series of bumps. A proximal version has also been described, frequently occurring in the upper extremities. Rare cases have been reported in the pelvis, vulva, penis, and spine.

Evofosfamide Chemical compound

Evofosfamide is an investigational hypoxia-activated prodrug that is in clinical development for cancer treatment. The prodrug is activated only at very low levels of oxygen (hypoxia). Such levels are common in human solid tumors, a phenomenon known as tumor hypoxia.

Cixutumumab (IMC-A12) is a human monoclonal antibody for the treatment of solid tumors.

Veliparib

Veliparib (ABT-888) is a potential anti-cancer drug acting as a PARP inhibitor. It kills cancer cells by blocking a protein called PARP, thereby preventing the repair of DNA or genetic damage in cancer cells and possibly making them more susceptible to anticancer treatments. Veliparib may make whole brain radiation treatment work more effectively against brain metastases from NSCLC. It has been shown to potentiate the effects of many chemotherapeutics, and as such has been part of many combination clinical trials.

Plus Therapeutics U.S. healthcare company

Plus Therapeutics, Inc. is a clinical-stage pharmaceutical company developing innovative, targeted radiotherapeutics for adults and children with rare and difficult-to-treat cancers. The company is headquartered in Austin, Texas, United States.

Temozolomide Medication for some brain cancers

Temozolomide (TMZ), sold under the brand name Temodar among others, is a medication used to treat brain tumors such as glioblastoma and anaplastic astrocytoma. It is taken by mouth or via intravenous infusion.

Nanobiotix

Nanobiotix is a biotechnology company that uses nanomedicine to develop new radiotherapy techniques for cancer patients. The company is headquartered in Paris, with additional corporate offices in New York and Massachusetts.

Alternating electric field therapy, sometimes called tumor treating fields (TTFields), is a type of electromagnetic field therapy using low-intensity, intermediate frequency electrical fields to treat cancer. A TTField-generating device manufactured by the Israeli company Novocure is approved in the United States and Europe for the treatment of newly diagnosed and recurrent glioblastoma multiforme (GBM), and is undergoing clinical trials for several other tumor types. Despite earning regulatory approval, the efficacy of this technology remains controversial among medical experts.

Sonodynamic therapy

Sonodynamic therapy (SDT) is a noninvasive treatment, often used for tumor irradiation, that utilizes a sonosensitizer and the deep penetration of ultrasound to treat lesions of varying depths by reducing target cell number and preventing future tumor growth. Many existing cancer treatment strategies cause systemic toxicity or cannot penetrate tissue deep enough to reach the entire tumor; however, emerging ultrasound stimulated therapies could offer an alternative to these treatments with their increased efficiency, greater penetration depth, and reduced side effects. Sonodynamic therapy could be used to treat cancers and other diseases, such as atherosclerosis, and diminish the risk associated with other treatment strategies since it induces cytotoxic effects only when externally stimulated by ultrasound and only at the cancerous region, as opposed to the systemic administration of chemotherapy drugs.

An oxygen diffusion-enhancing compound is any substance that increases the availability of oxygen in body tissues by influencing the molecular structure of water in blood plasma and thereby promoting the movement (diffusion) of oxygen through plasma. Oxygen diffusion-enhancing compounds have shown promise in the treatment of conditions associated with hypoxia and ischemia. Such conditions include hemorrhagic shock, myocardial infarction, and stroke.

Diffusion Pharmaceuticals

Diffusion Pharmaceuticals Inc (NASDAQ:DFFN) is a publicly traded biotechnology and drug development company based in Charlottesville, Virginia, U.S. It was co-founded in 2001 by American life sciences entrepreneur David Kalergis and University of Virginia Chemical Engineering Professor John L. Gainer. Gainer is the inventor of the company's platform technology of oxygen diffusion-enhancing compounds and its lead drug, trans sodium crocetinate (TSC). TSC acts to increase the rate at which oxygen moves through blood plasma by the process of diffusion, a phenomenon that forms the basis for the company's name. On January 8, 2016, the formerly privately held company merged with Restorgenex Cororation to become a publicly traded NASDAQ-listed company with the trading symbol DFFN. TSC and other oxygen diffusion-enhancing compounds, including bipolar trans carotenoid salts, have been investigated by Diffusion Pharmaceuticals for treatment of conditions associated with reduced oxygen availability in tissues (hypoxia). Most recently, Diffusion has begun the initiation of clinical trials in the U.S. and Eastern Europe for the use of trans sodium crocetinate in the treatment of COVID-19 patients with respiratory distress-related oxygen deficiency and the risk of multiple organ failure.

Aldoxorubicin

Aldoxorubicin (INNO-206) is a tumor-targeted doxorubicin conjugate in development by CytRx. Specifically, it is the (6-maleimidocaproyl) hydrazone of doxorubicin. Essentially, this chemical name describes doxorubicin attached to an acid-sensitive linker.

References

  1. Lawrence, Theodore S.; Blackstock, A.William; McGinn, Cornelius (January 2003). "The mechanism of action of radiosensitization of conventional chemotherapeutic agents". Seminars in Radiation Oncology. 13 (1): 13–21. doi:10.1053/srao.2003.50002. PMID   12520460.
  2. Harrison LB, Chadha M, Hill RJ, Hu K, Shasha D (2002). "Impact of tumor hypoxia and anemia on radiation therapy outcomes". Oncologist. 7 (6): 492–508. doi:10.1634/theoncologist.7-6-492. PMID   12490737.
  3. 1 2 "PharmaEngine, Nanobiotix Enter Global Pivotal Trial of PEP503 (NBTXR3) in Soft Tissue Sarcoma". businesswire.com. 8 October 2014.
  4. 1 2 "NanoXray video". nanobiotix.
  5. "Nanobiotix to Initiate Trial of NBTXR3 in Head and Neck, Lung Cancers".
  6. "NBTXR3 Crystalline Nanoparticles and Radiation Therapy in Treating and Randomized Patients in Two Arms With Soft Tissue Sarcoma of the Extremity and Trunk Wall". ClinicalTrials.gov. 5 April 2021.
  7. "NBTXR3 Crystalline Nanoparticles and Stereotactic Body Radiation Therapy in the Treatment of Liver Cancers". ClinicalTrials.gov. 5 May 2021.
  8. "NBTXR3 Nanoparticles and EBRT or EBRT With Brachytherapy in the Treatment of Prostate Adenocarcinoma". ClinicalTrials.gov. 5 May 2021.
  9. "NBTXR3 Crystalline Nanoparticles and Radiation Therapy in Treating Patients With Locally Advanced Squamous Cell Carcinoma of the Oral Cavity or Oropharynx". ClinicalTrials.gov.
  10. "AF CRT +/- Nimorazole in HNSCC". 9 May 2022.
  11. "Safety and Efficacy Study of Trans Sodium Crocetinate (TSC) With Concomitant Radiation Therapy and Temozolomide in Newly Diagnosed Glioblastoma (GBM)". ClinicalTrials.gov. November 2011.
  12. Gainer JL, Sheehan JP, Larner JM, Jones DR (2016). "Trans sodium crocetinate with temozolomide and radiation therapy for glioblastoma multiforme". Journal of Neurosurgery. 126 (2): 460–466. doi: 10.3171/2016.3.JNS152693 . PMID   27177177.
  13. "The Effects of NVX-108 as a Radiation Sensitizer in Glioblastoma (GBM)". 26 February 2019.

PD-icon.svg This article incorporates  public domain material from the U.S. National Cancer Institute document: "Dictionary of Cancer Terms".