Radon–Riesz property

Last updated

The Radon–Riesz property is a mathematical property for normed spaces that helps ensure convergence in norm. Given two assumptions (essentially weak convergence and continuity of norm), we would like to ensure convergence in the norm topology.

Limit of a sequence value that the terms of a sequence "tend to"

In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to". If such a limit exists, the sequence is called convergent. A sequence which does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of analysis ultimately rests.

Contents

Definition

Suppose that (X, ||·||) is a normed space. We say that X has the Radon–Riesz property (or that X is a Radon–Riesz space) if whenever is a sequence in the space and is a member of X such that converges weakly to and , then converges to in norm; that is, .

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

Other names

Although it would appear that Johann Radon was one of the first to make significant use of this property in 1913, M. I. Kadets and V. L. Klee also used versions of the Radon–Riesz property to make advancements in Banach space theory in the late 1920s. It is common for the Radon–Riesz property to also be referred to as the Kadets–Klee property or property (H). According to Robert Megginson, the letter H does not stand for anything. It was simply referred to as property (H) in a list of properties for normed spaces that starts with (A) and ends with (H). This list was given by K. Fan and I. Glicksberg (Observe that the definition of (H) given by Fan and Glicksberg includes additionally the rotundity of the norm, so it does not coincides with the Radon-Riesz property itself). The "Riesz" part of the name refers to Frigyes Riesz. He also made some use of this property in the 1920s.

Johann Radon Austrian mathematician

Johann Karl August Radon was an Austrian mathematician. His doctoral dissertation was on the calculus of variations.

Mikhail Iosiphovich Kadets was a Soviet-born Jewish mathematician working in analysis and the theory of Banach spaces.

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.

It is important to know that the name "Kadets-Klee property" is used sometimes to speak about the coincidence of the weak topologies and norm topologies in the unit sphere of the normed space.

Examples

1. Every real Hilbert space is a Radon–Riesz space. Indeed, suppose that H is a real Hilbert space and that is a sequence in H converging weakly to a member of H. Using the two assumptions on the sequence and the fact that

Hilbert space inner product space that is metrically complete; a Banach space whose norm induces an inner product (follows the parallelogram identity)

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used.

and letting n tend to infinity, we see that

Thus H is a Radon–Riesz space.

2. Every uniformly convex Banach space is a Radon-Riesz space. See Section 3.7 of Haim Brezis' Functional analysis.

See also

Frigyes Riesz Hungarian mathematician

Frigyes Riesz was a Hungarian mathematician who made fundamental contributions to functional analysis, as did his younger brother Marcel Riesz.

Functional analysis branch of mathematical analysis concerned with infinite-dimensional topological vector spaces, often spaces of functions

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations.

In mathematics, Schur's property, named after Issai Schur, is the property of normed spaces that is satisfied precisely if weak convergence of sequences entails convergence in norm.

Related Research Articles

There are several well-known theorems in functional analysis known as the Riesz representation theorem. They are named in honor of Frigyes Riesz.

In mathematics, a trace class operator is a compact operator for which a trace may be defined, such that the trace is finite and independent of the choice of basis. Trace class operators are essentially the same as nuclear operators, though many authors reserve the term "trace class operator" for the special case of nuclear operators on Hilbert spaces, and reserve "nuclear operator" for usage in more general Banach spaces.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

In functional analysis, a branch of mathematics, a compact operator is a linear operator L from a Banach space X to another Banach space Y, such that the image under L of any bounded subset of X is a relatively compact subset of Y. Such an operator is necessarily a bounded operator, and so continuous.

In mathematics, especially functional analysis, Bessel's inequality is a statement about the coefficients of an element in a Hilbert space with respect to an orthonormal sequence.

In mathematics, the Riesz–Fischer theorem in real analysis is any of a number of closely related results concerning the properties of the space L2 of square integrable functions. The theorem was proven independently in 1907 by Frigyes Riesz and Ernst Sigismund Fischer.

In mathematics, weak convergence in a Hilbert space is convergence of a sequence of points in the weak topology.

In mathematics, a nuclear operator is a compact operator for which a trace may be defined, such that the trace is finite and independent of the choice of basis . Nuclear operators are essentially the same as trace class operators, though most authors reserve the term "trace class operator" for the special case of nuclear operators on Hilbert spaces.

In mathematics, a sequence of vectors (xn) in a Hilbert space is called a Riesz sequence if there exist constants such that

In functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In mathematics, the Opial property is an abstract property of Banach spaces that plays an important role in the study of weak convergence of iterates of mappings of Banach spaces, and of the asymptotic behaviour of nonlinear semigroups. The property is named after the Polish mathematician Zdzisław Opial.

In functional analysis, the Dunford–Pettis property, named after Nelson Dunford and B. J. Pettis, is a property of a Banach space stating that all weakly compact operators from this space into another Banach space are completely continuous. Many standard Banach spaces have this property, most notably, the space C(K) of continuous functions on a compact space and the space L1(μ) of the Lebesgue integrable functions on a measure space. Alexander Grothendieck introduced the concept in the early 1950s, following the work of Dunford and Pettis, who developed earlier results of Shizuo Kakutani, Kōsaku Yosida, and several others. Important results were obtained more recently by Jean Bourgain. Nevertheless, the Dunford–Pettis property is not completely understood.

In mathematics, a square-integrable function, also called a quadratically integrable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value is finite. Thus, square-integrability on the real line is defined as follows.

In mathematics, Delta-convergence, or Δ-convergence, is a mode of convergence in metric spaces, weaker than the usual metric convergence, and similar to the weak convergence in Banach spaces. In Hilbert space, Delta-convergence and weak convergence coincide. For a general class of spaces, similarly to weak convergence, every bounded sequence has a Delta-convergent subsequence. Delta convergence was first introduced by Teck-Cheong Lim, and, soon after, under the name of almost convergence, by Tadeusz Kuczumow.

In mathematics, in the areas of topology and functional analysis, the Anderson–Kadec theorem states that any two infinite dimensional, separable Banach spaces, or more generally Fréchet spaces are homeomorphic as topological spaces. The theorem was proved by Mikhail Kadets (1966) and Richard Davis Anderson.

References