Rain Magazine

Last updated
RAIN Magazine
EditorSteve Johnson, Lane deMoll, Tom Bender, Greg Bryant, F. Lansing Scott, Marcia Johnson, Lee Johnson, Phil Conti, Del Greenfield, Tad Mutersbaugh, Mark Roseland, Debra Whitelaw, Karen Struening, Carlotta Collette, Steve Rudman, Scott Androes, Mimi Maduro, Steven Ames, Linda Sawaya, John Ferrell, Rob Baird, Tanya Kucak, Katherine Sadler, Jeff Strang, Nancy Cosper, Laura Stuchinsky, Stephen Schneider, Danielle Janes [1]
CategoriesEnvironmental
Frequencymonthly/quarterly/continuous (varied)
First issueOctober 1974
CountryUnited States of America
Language English
Website https://www.rainmagazine.com
ISSN 0739-621X


RAIN is an appropriate technology, environmental, and community-organizing journal that began in Portland, Oregon in 1974. [1] [2] [3] [4] [5]

Related Research Articles

<span class="mw-page-title-main">Hydropower</span> Power generation via movement of water

Hydropower, also known as water power, is the use of falling or fast-running water to produce electricity or to power machines. This is achieved by converting the gravitational potential or kinetic energy of a water source to produce power. Hydropower is a method of sustainable energy production. Hydropower is now used principally for hydroelectric power generation, and is also applied as one half of an energy storage system known as pumped-storage hydroelectricity.

<span class="mw-page-title-main">Physics</span> Scientific field of study

Physics is the natural science of matter, involving the study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines. A scientist who specializes in the field of physics is called a physicist.

<span class="mw-page-title-main">Renewable energy</span> Energy collected from renewable resources

Renewable energy is energy from renewable natural resources that are replenished on a human timescale. The most widely used renewable energy types are solar energy, wind power and hydropower. Bioenergy and geothermal power are also significant in some countries. Some also consider nuclear power a renewable power source, although this is controversial. Renewable energy installations can be large or small and are suited for both urban and rural areas. Renewable energy is often deployed together with further electrification. This has several benefits: electricity can move heat and vehicles efficiently, and is clean at the point of consumption. Variable renewable energy sources are those that have a fluctuating nature, such as wind power and solar power. In contrast, controllable renewable energy sources include dammed hydroelectricity, bioenergy, or geothermal power.

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun, harnessed with technology

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy, and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

Decentralization or decentralisation is the process by which the activities of an organization, particularly those regarding planning and decision-making, are distributed or delegated away from a central, authoritative location or group and given to smaller factions within it.

<span class="mw-page-title-main">Infrastructure</span> Facilities and systems serving society

Infrastructure is the set of facilities and systems that serve a country, city, or other area, and encompasses the services and facilities necessary for its economy, households and firms to function. Infrastructure is composed of public and private physical structures such as roads, railways, bridges, tunnels, water supply, sewers, electrical grids, and telecommunications. In general, infrastructure has been defined as "the physical components of interrelated systems providing commodities and services essential to enable, sustain, or enhance societal living conditions" and maintain the surrounding environment.

<span class="mw-page-title-main">Appropriate technology</span> Concept in the philosophy and politics of technology

Appropriate technology is a movement encompassing technological choice and application that is small-scale, affordable by locals, decentralized, labor-intensive, energy-efficient, environmentally sustainable, and locally autonomous. It was originally articulated as intermediate technology by the economist Ernst Friedrich "Fritz" Schumacher in his work Small Is Beautiful. Both Schumacher and many modern-day proponents of appropriate technology also emphasize the technology as people-centered.

<span class="mw-page-title-main">Soft energy path</span> Investment in renewables and efficiency

In 1976, energy policy analyst Amory Lovins coined the term soft energy path to describe an alternative future where energy efficiency and appropriate renewable energy sources steadily replace a centralized energy system based on fossil and nuclear fuels.

<span class="mw-page-title-main">Sustainable energy</span> Energy that responsibly meets social, economic, and environmental needs

Energy is sustainable if it "meets the needs of the present without compromising the ability of future generations to meet their own needs." Definitions of sustainable energy usually look at its effects on the environment, the economy, and society. These impacts range from greenhouse gas emissions and air pollution to energy poverty and toxic waste. Renewable energy sources such as wind, hydro, solar, and geothermal energy can cause environmental damage, but are generally far more sustainable than fossil fuel sources.

Leapfrogging is a concept used in many domains of the economics and business fields, and was originally developed in the area of industrial organization and economic growth. The main idea behind the concept of leapfrogging is that small and incremental innovations lead a dominant firm to stay ahead. However, sometimes, radical innovations will permit new firms to leapfrog the ancient and dominant firm. The phenomenon can occur to firms but also to leadership of countries or cities, where a developing country can skip stages of the path taken by industrial nations, enabling them to catch up sooner, particularly in terms of economic growth.

<span class="mw-page-title-main">Environmental technology</span> Technical and technological processes for protection of the environment

Environmental technology (envirotech) is the use of engineering and technological approaches to understand and address issues that affect the environment with the aim of fostering environmental improvement. It involves the application of science and technology in the process of addressing environmental challenges through environmental conservation and the mitigation of human impact to the environment.

<span class="mw-page-title-main">National Renewable Energy Laboratory</span> United States national laboratory

The National Renewable Energy Laboratory (NREL) in the US specializes in the research and development of renewable energy, energy efficiency, energy systems integration, and sustainable transportation. NREL is a federally funded research and development center sponsored by the Department of Energy and operated by the Alliance for Sustainable Energy, a joint venture between MRIGlobal and Battelle. Located in Golden, Colorado, NREL is home to the National Center for Photovoltaics, the National Bioenergy Center, and the National Wind Technology Center.

<span class="mw-page-title-main">Solar cell</span> Photodiode used to produce power from light on a large scale

A solar cell or photovoltaic cell is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. It is a form of photoelectric cell, a device whose electrical characteristics vary when it is exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as "solar panels". Almost all commercial PV cells consist of crystalline silicon, with a market share of 95%. Cadmium telluride thin-film solar cells account for the remainder. The common single-junction silicon solar cell can produce a maximum open-circuit voltage of approximately 0.5 to 0.6 volts.

Eco-innovation is the development of products and processes that contribute to sustainable development, applying the commercial application of knowledge to elicit direct or indirect ecological improvements. This includes a range of related ideas, from environmentally friendly technological advances to socially acceptable innovative paths towards sustainability. The field of research that seeks to explain how, why, and at what rate new "ecological" ideas and technology spread is called eco-innovation diffusion.

<span class="mw-page-title-main">Mark Diesendorf</span> Australian academic and environmentalist

Mark Diesendorf is an Australian academic and environmentalist, known for his work in sustainable development and renewable energy. He currently researches at the University of New South Wales, Australia. He was formerly professor of environmental science and founding director of the Institute for Sustainable Futures at the University of Technology, Sydney and before that a principal research scientist with CSIRO, where he was involved in early research on integrating wind power into electricity grids. His most recent books are The Path to a Sustainable Civilisation (2023) and Sustainable Energy Solutions for Climate Change (2014).

<span class="mw-page-title-main">Renewable energy commercialization</span> Deployment of technologies harnessing easily replenished natural resources

Renewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include biomass, hydroelectricity, geothermal power and heat. Second-generation technologies are market-ready and are being deployed at the present time; they include solar heating, photovoltaics, wind power, solar thermal power stations, and modern forms of bioenergy. Third-generation technologies require continued R&D efforts in order to make large contributions on a global scale and include advanced biomass gasification, hot-dry-rock geothermal power, and ocean energy. In 2019, nearly 75% of new installed electricity generation capacity used renewable energy and the International Energy Agency (IEA) has predicted that by 2025, renewable capacity will meet 35% of global power generation.

<span class="mw-page-title-main">Renewable energy in Canada</span>

Renewable energy in Canada represented 17.3% of the Total Energy Supply (TES) in 2020, following natural gas at 39.1% and oil at 32.7% of the TES.

Arthur J. Nozik is a researcher at the National Renewable Energy Lab (NREL). He is also a professor at the University of Colorado, which is located in Boulder. He researches semiconductor quantum dots at the National Renewable Energy Laboratory, and is a chemistry professor at the University of Colorado. He also does research for the advancement of solar energy, for which he won the Intergovernmental Renewable Energy Organization (IREO) Award for Science and Technology in 2009.

The Fraunhofer Institute for Solar Energy Systems ISE is an institute of the Fraunhofer-Gesellschaft. Located in Freiburg, Germany, The Institute performs applied scientific and engineering research and development for all areas of solar energy. Fraunhofer ISE has three external branches in Germany which carry out work on solar cell and semiconductor material development: the Laboratory and Service Center (LSC) in Gelsenkirchen, the Technology Center of Semiconductor Materials (THM) in Freiberg, and the Fraunhofer Center for Silicon Photovoltaics (CSP) in Halle. From 2006 to 2016 Eicke Weber was the director of Fraunhofer ISE. With over 1,100 employees, Fraunhofer ISE is the largest institute for applied solar energy research in Europe. The 2012 Operational Budget including investments was 74.3 million euro.

<span class="mw-page-title-main">Raphie Kaplinsky</span> English professor

Raphael Malcolm Kaplinsky is an Honorary Professor at the Science Policy Research Unit and an Emeritus Professorial Fellow at the Institute of Development Studies, University of Sussex. In 2024 he was awarded an Honorary Doctorate by the University of Johannesburg, South Africa. He was an active and well-known opponent to Apartheid in South Africa during the 1960s, and played a leading role in 1968 in the Mafeje affair. Kaplinsky was not allowed to return to his country of birth until Nelson Mandela was released from prison in 1990, after which he played an active role in policy development at the national and regional levels. He spent the bulk of his professional career at the University of Sussex where he led research programmes on industrial and technology policy and on Global Value Chain. He has a large and distinguished publications record, and led and participated in a number of Advisory Missions to governments in Africa, Asia, Latin America, the Caribbean and Europe.

References

  1. 1 2 "RAIN: journal of appropriate technology". Portland State University.
  2. Martin Carnoy; Derek Shearer (12 February 2016). Economic Democracy (Routledge Revivals): The Challenge of the 1980s. Routledge. ISBN   978-1-317-27708-8.
  3. Solar Energy Research Institute. Market Development Branch (1979). Reaching Up, Reaching Out: A Guide to Organizing Local Solar Events. [Department of Energy], Solar Energy Research Institute, Commercialization Division, Market Development Branch. pp. 41–. OCLC   13929135.
  4. Brian Tokar (1997). Earth for Sale: Reclaiming Ecology in the Age of Corporate Greenwash. South End Press. pp. 121–. ISBN   978-0-89608-557-2. OCLC   1033561381.
  5. Renewable Resources: A National Catalog of Model Projects. The Office. 1980. OCLC   1225770814.