Raman Prinja

Last updated

Prof. Raman K. Prinja is an astronomer, professor and author. He is professor of astrophysics at University College London (UCL) [1] and has been awarded the Pol and Christiane Swings research prize by the Royal Academy of Belgium; UCL Faculty Teaching Award (2000, 2010); UCL Education Award 2018; American Institute of Physics Science Education Award (2019); Royal Society Young People's Book Prize (2019). In Sept. 2021 Prof Raman Prinja was a recipient of the UCL Leadership Award for Outstanding Contribution. The Institute of Physics 2021 Lise Meitner Medal and Prize has been awarded to Prof. Prinja for his distinguished long-term contributions to engage and inspire children in physics, including his highly motivating range of books, public lectures and interactive science events for young people.

Contents

Research

Prof. Prinja's area of research includes studies of outflows at the extremes of stellar evolution. Current projects aim to investigate the nature of mass-loss via stellar winds in a broad range of astrophysical settings, including: the structure of fast outflows from the central stars of planetary nebulae, mass-loss, clumping and the origin of structure in the winds of luminous OB stars, accretion-disc outflows in cataclysmic variables and, the origin and nature of mass outflows from young classical T Tauri stars. The work relates to many fundamental astrophysical processes, including radiation hydrodynamics and plasma physics, accretion discs, the evolution of stars, the dynamics and enrichment of the interstellar medium, star formation, and the functioning of galaxies. The studies are based on line-synthesis analyses coupled with multi-wavelength data sets, spanning far-UV, optical and near-IR spectroscopy, plus radio and mm observations.

Publications

Prinja has written over 150 research papers. [2]

He is the author of popular science books Understanding the Universe (2003), Visions of the Universe. The Latest Discoveries in Space Revealed (2004), Wonders of the planets. Visions of Our Solar System in the 21st Century (2006) and Stars: A Journey through stellar birth, life and death (2008) and has written a series of astronomy books for children, including his latest books Science Crazy (2012), The Universe Rocks (2012), Night Sky Watcher (2016) and Planetarium: Welcome to the Museum (2018).

Related Research Articles

<span class="mw-page-title-main">Star formation</span> Process by which dense regions of molecular clouds in interstellar space collapse to form stars

Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. As a branch of astronomy, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations.

<span class="mw-page-title-main">Astronomy</span> Scientific study of celestial objects

Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, meteoroids, asteroids, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere. Cosmology is a branch of astronomy that studies the universe as a whole.

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that emits a significant amount of energy across the electromagnetic spectrum, with characteristics indicating that the luminosity is not produced by stars. Such excess, non-stellar emissions have been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an active galaxy. The non-stellar radiation from an AGN is theorized to result from the accretion of matter by a supermassive black hole at the center of its host galaxy.

<span class="mw-page-title-main">Stellar wind</span> Flow of gas ejected from the upper atmosphere of a star

A stellar wind is a flow of gas ejected from the upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spherically symmetric.

<span class="mw-page-title-main">Protoplanetary disk</span> Gas and dust surrounding a newly formed star

A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, because gases or other material may be falling from the inner edge of the disk onto the surface of the star. This process should not be confused with the accretion process thought to build up the planets themselves. Externally illuminated photo-evaporating protoplanetary disks are called proplyds.

<span class="mw-page-title-main">Astrophysics</span> Subfield of astronomy

Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, Astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space–what they are, rather than where they are." Among the subjects studied are the Sun, other stars, galaxies, extrasolar planets, the interstellar medium and the cosmic microwave background. Emissions from these objects are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, astrophysicists apply concepts and methods from many disciplines of physics, including classical mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.

<span class="mw-page-title-main">Herbig–Haro object</span> Small patches of nebulosity associated with newly born stars

Herbig–Haro (HH) objects are bright patches of nebulosity associated with newborn stars. They are formed when narrow jets of partially ionised gas ejected by stars collide with nearby clouds of gas and dust at several hundred kilometres per second. Herbig–Haro objects are commonly found in star-forming regions, and several are often seen around a single star, aligned with its rotational axis. Most of them lie within about one parsec of the source, although some have been observed several parsecs away. HH objects are transient phenomena that last around a few tens of thousands of years. They can change visibly over timescales of a few years as they move rapidly away from their parent star into the gas clouds of interstellar space. Hubble Space Telescope observations have revealed the complex evolution of HH objects over the period of a few years, as parts of the nebula fade while others brighten as they collide with the clumpy material of the interstellar medium.

<span class="mw-page-title-main">Protoplanetary nebula</span> Nebula surrounding a dying star

A protoplanetary nebula or preplanetary nebula is an astronomical object which is at the short-lived episode during a star's rapid evolution between the late asymptotic giant branch (LAGB) phase and the subsequent planetary nebula (PN) phase. A PPN emits strongly in infrared radiation, and is a kind of reflection nebula. It is the second-from-the-last high-luminosity evolution phase in the life cycle of intermediate-mass stars.

<span class="mw-page-title-main">Outline of astronomy</span>

The following outline is provided as an overview of and topical guide to astronomy:

Fred C. Adams is an American astrophysicist who has made contributions to the study of physical cosmology.

<span class="mw-page-title-main">Bipolar outflow</span> Two continuous flows of gas from the poles of a star

A bipolar outflow comprises two continuous flows of gas from the poles of a star. Bipolar outflows may be associated with protostars, or with evolved post-AGB stars.

<span class="mw-page-title-main">HH 46/47</span> Herbig-Haro objects in the constellation Vela

HH 46/47 is a complex of Herbig–Haro objects, located around 450 parsecs away in a Bok globule near the Gum nebula. Jets of partially ionized gas emerging from a young star produce visible shocks upon impact with the ambient medium. Discovered in 1977, it is one of the most studied HH objects and the first jet to be associated with young stars was found in HH 46/47. Four emission nebulae, HH 46, HH 47A, HH 47C and HH 47D and a jet, HH 47B, have been identified in the complex. It also contains a mostly unipolar molecular outflow, and two large bow shocks on opposite sides of the source star. The overall size of the complex is about 3 parsecs.

The T Tauri wind — so named because of the young star currently in this stage—is a phenomenon indicative of the phase of stellar development between the accretion of material from the slowing rotating material of a solar nebula and the ignition of the hydrogen that has agglomerated into the protostar.

The Faculty of Physics and Astronomy is one of twelve faculties at the University of Heidelberg. It comprises the Kirchhoff Institute of Physics, the Institute of Physics, Theoretical Physics, Environmental Physics and Theoretical Astrophysics.

James Edward Pringle is a British astrophysicist. He is a professor of theoretical astronomy at the Institute of Astronomy, Cambridge part of the University of Cambridge.

Catherine Jane Clarke is a Professor of Theoretical Astrophysics at the University of Cambridge and a fellow of Clare College, Cambridge. In 2017 she became the first woman to be awarded the Eddington Medal by the Royal Astronomical Society. In 2022 she became the first female director of the Institute of Astronomy, Cambridge.

Lidia van Driel-Gesztelyi is a Hungarian solar scientist and professor of physics at the Mullard Space Science Laboratory of University College London. She also maintains affiliations with Solar and Stellar Activity Research Team at Konkoly Observatory of the Hungarian Academy of Sciences and the Space Research Laboratory (LESIA) of Paris Observatory. She has been Editor-in-Chief of the journal Solar Physics since 2005 and has served in leadership roles within the International Astronomical Union.

<span class="mw-page-title-main">Richard V. E. Lovelace</span> American astrophysicist and plasma physicist

Richard Van Evera Lovelace is an American astrophysicist and plasma physicist. He is best known for the discovery of the period of the pulsar in the Crab Nebula, which helped to prove that pulsars are rotating neutron stars, for developing a magnetic model of astrophysical jets from galaxies, and for developing a model of Rossby waves in accretion disks. He organized a US-Russia collaboration in plasma astrophysics, which focused on modeling of plasma accretion and outflows from magnetized rotating stars.

Sachiko Tsuruta is a Japanese-born American astrophysicist.

References