Rapid shallow breathing index

Last updated

The rapid shallow breathing index (RSBI) or Yang Tobin index is a tool that is used in the weaning of mechanical ventilation on intensive care units. The RSBI is defined as the ratio of respiratory frequency to tidal volume (f/VT). People on a ventilator who cannot tolerate independent breathing tend to breathe rapidly (high frequency) and shallowly (low tidal volume), and will therefore have a high RSBI. [1] The index was introduced in 1991 by Karl Yang and Martin J. Tobin.

Contents

Equation

Measurement

Measurement is done with a handheld spirometer attached to the endotracheal tube while a patient breathes room air for one minute without any ventilator assistance. [2]

Example

As an example, a patient who has a respiratory rate of 25 breaths/min and an average tidal volume of 250 mL/breath has an RSBI = (25 breaths/min)/(0.25 L) = 100 breaths/min/L.

In contrast, the 'average' patient breathing 12 breaths/min, with a tidal volume of 420 mL/breath (70kg x 6 mL/kg) would have an RSBI = (12 breaths/min)/(.420 L) = 28 breaths/min/L.

The higher the RSBI, the more distressed the patient is generally considered to be.

History

The concept was introduced in a 1991 paper by physicians Karl Yang and Martin J. Tobin from the University of Texas Health Science Center at Houston and Stritch School of Medicine at Loyola University in Chicago. [1]

Weaning readiness

A RSBI score of less than 65 [3] indicating a relatively low respiratory rate compared to tidal volume is generally considered as an indication of weaning readiness. A patient with a rapid shallow breathing index (RSBI) of less than 105 has an approximately 80% chance of being successfully extubated, whereas an RSBI of greater than 105 virtually guarantees weaning failure. [4] Other criteria that have been suggested for a successful weaning trial include the ability to (1) tolerate a Spontaneous breathing trial for 30 minutes (in most patients, SBT failure will occur within approximately 20 minutes), (2) maintain a respiration rate of less than 35/min, and (3) keep an oxygen saturation of 90% without arrhythmias; sudden increases in heart rate and blood pressure; or development of respiratory distress, diaphoresis, or anxiety. Once the SBT is tolerated, the ability to clear secretions, a decreasing secretion burden, and a patent upper airway are other criteria that should be met to increase extubation success. Patients should be assessed daily for their readiness to be weaned from mechanical ventilation by withdrawing sedation and performing a spontaneous breathing trial.

Related Research Articles

<span class="mw-page-title-main">Mechanical ventilation</span> Method to mechanically assist or replace spontaneous breathing

Mechanical ventilation, assisted ventilation or intermittent mandatory ventilation (IMV), is the medical term for using a machine called a ventilator to fully or partially provide artificial ventilation. Mechanical ventilation helps move air into and out of the lungs, with the main goal of helping the delivery of oxygen and removal of carbon dioxide. Mechanical ventilation is used for many reasons, including to protect the airway due to mechanical or neurologic cause, to ensure adequate oxygenation, or to remove excess carbon dioxide from the lungs. Various healthcare providers are involved with the use of mechanical ventilation and people who require ventilators are typically monitored in an intensive care unit.

<span class="mw-page-title-main">Tidal volume</span> Volume of air displaced between normal inhalation and exhalation

Tidal volume is the volume of air moved into or out of the lungs during a normal breath. In a healthy, young human adult, tidal volume is approximately 500 ml per inspiration or 7 ml/kg of body mass.

<span class="mw-page-title-main">Acute respiratory distress syndrome</span> Human disease

Acute respiratory distress syndrome (ARDS) is a type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. Symptoms include shortness of breath (dyspnea), rapid breathing (tachypnea), and bluish skin coloration (cyanosis). For those who survive, a decreased quality of life is common.

<span class="mw-page-title-main">Respiratory arrest</span> Medical condition

Respiratory arrest is a sickness caused by apnea or respiratory dysfunction severe enough it will not sustain the body. Prolonged apnea refers to a patient who has stopped breathing for a long period of time. If the heart muscle contraction is intact, the condition is known as respiratory arrest. An abrupt stop of pulmonary gas exchange lasting for more than five minutes may permanently damage vital organs, especially the brain. Lack of oxygen to the brain causes loss of consciousness. Brain injury is likely if respiratory arrest goes untreated for more than three minutes, and death is almost certain if more than five minutes.

<span class="mw-page-title-main">Liquid breathing</span> Respiration of oxygen-rich liquid by a normally air-breathing organism

Liquid breathing is a form of respiration in which a normally air-breathing organism breathes an oxygen-rich liquid, rather than breathing air.

<span class="mw-page-title-main">Bag valve mask</span> Hand-held device to provide positive pressure ventilation

A bag valve mask (BVM), sometimes known by the proprietary name Ambu bag or generically as a manual resuscitator or "self-inflating bag", is a hand-held device commonly used to provide positive pressure ventilation to patients who are not breathing or not breathing adequately. The device is a required part of resuscitation kits for trained professionals in out-of-hospital settings (such as ambulance crews) and is also frequently used in hospitals as part of standard equipment found on a crash cart, in emergency rooms or other critical care settings. Underscoring the frequency and prominence of BVM use in the United States, the American Heart Association (AHA) Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiac Care recommend that "all healthcare providers should be familiar with the use of the bag-mask device." Manual resuscitators are also used within the hospital for temporary ventilation of patients dependent on mechanical ventilators when the mechanical ventilator needs to be examined for possible malfunction or when ventilator-dependent patients are transported within the hospital. Two principal types of manual resuscitators exist; one version is self-filling with air, although additional oxygen (O2) can be added but is not necessary for the device to function. The other principal type of manual resuscitator (flow-inflation) is heavily used in non-emergency applications in the operating room to ventilate patients during anesthesia induction and recovery.

Ventilator-associated lung injury (VALI) is an acute lung injury that develops during mechanical ventilation and is termed ventilator-induced lung injury (VILI) if it can be proven that the mechanical ventilation caused the acute lung injury. In contrast, ventilator-associated lung injury (VALI) exists if the cause cannot be proven. VALI is the appropriate term in most situations because it is virtually impossible to prove what actually caused the lung injury in the hospital.

A spontaneous breathing trial is a test for patients on mechanical ventilation, before they can be weaned from the ventilator, i.e. return to normal breathing. The weaning process depends closely on the patient's pathology, but the final common pathway to ventilator independence always includes at least one trial of spontaneous breathing. Trials of spontaneous breathing have been shown to accurately predict the success of spontaneous breathing.

Neurally adjusted ventilatory assist (NAVA) is a mode of mechanical ventilation. NAVA delivers assistance in proportion to and in synchrony with the patient's respiratory efforts, as reflected by an electrical signal. This signal represents the electrical activity of the diaphragm, the body's principal breathing muscle.

Pressure support ventilation (PSV), also known as pressure support, is a spontaneous mode of ventilation. The patient initiates every breath and the ventilator delivers support with the preset pressure value. With support from the ventilator, the patient also regulates their own respiratory rate and tidal volume.

Modes of mechanical ventilation are one of the most important aspects of the usage of mechanical ventilation. The mode refers to the method of inspiratory support. In general, mode selection is based on clinician familiarity and institutional preferences, since there is a paucity of evidence indicating that the mode affects clinical outcome. The most frequently used forms of volume-limited mechanical ventilation are intermittent mandatory ventilation (IMV) and continuous mandatory ventilation (CMV). There have been substantial changes in the nomenclature of mechanical ventilation over the years, but more recently it has become standardized by many respirology and pulmonology groups. Writing a mode is most proper in all capital letters with a dash between the control variable and the strategy.

Continuous mandatory ventilation (CMV) is a mode of mechanical ventilation in which breaths are delivered based on set variables. Still used in the operating room, in previous nomenclature CMV referred to "controlled mechanical ventilation", a mode of ventilation characterized by a ventilator that makes no effort to sense patient breathing effort. In continuous mandatory ventilation, the ventilator can be triggered either by the patient or mechanically by the ventilator. The ventilator is set to deliver a breath according to parameters selected by the operator. "Controlled mechanical ventilation" is an outdated expansion for "CMV"; "continuous mandatory ventilation" is now accepted standard nomenclature of mechanical ventilation. CMV today can assist or control dynamically, depending on transient presence or absence of spontaneous breathing effort. Thus, today's CMV would have been called ACV in older nomenclature, and the original form of CMV is a thing of the past. But despite continual technological improvement over the past half century, CMV sometimes may still be uncomfortable for the patient.

Many terms are used in mechanical ventilation, some are specific to brand, model, trademark and mode of mechanical ventilation. There is a standardized nomenclature of mechanical ventilation that is specific about nomenclature related to modes, but not settings and variables.

Mandatory minute ventilation (MMV) is a mode of mechanical ventilation which requires the operator to determine what the appropriate minute ventilation for the patient should be and the ventilator then monitors the patient's ability to generate this volume. If the calculation suggests the volume target will not be met, supplemental breaths are delivered at the targeted volume to achieve the desired minute ventilation.

Intermittent Mandatory Ventilation (IMV) refers to any mode of mechanical ventilation where a regular series of breaths are scheduled but the ventilator senses patient effort and reschedules mandatory breaths based on the calculated need of the patient. Similar to continuous mandatory ventilation in parameters set for the patients pressures and volumes but distinct in its ability to support a patient by either supporting their own effort or providing support when patient effort is not sensed. IMV is frequently paired with additional strategies to improve weaning from ventilator support or to improve cardiovascular stability in patients who may need full life support.

Within the medical field of respiratory therapy, Open lung ventilation is a strategy that is utilized by several modes of mechanical ventilation to combine low tidal volume and applied PEEP to maximize recruitment of alveoli. The low tidal volume aims to minimize alveolar overdistention and the PEEP minimizes cyclic atelectasis. Working in tandem the effects from both decrease the risk of ventilator-associated lung injury.

<span class="mw-page-title-main">SensorMedics high-frequency oscillatory ventilator</span>

The SensorMedics High-Frequency Oscillatory Ventilator is a patented high-frequency mechanical ventilator designed and manufactured by SensorMedics Corp. of Yorba Linda, California. After a series of acquisitions, Vyaire Medical, Inc. marketed the product as 3100A/B HFOV Ventilators. Model 3100 received premarket approval from the United States Food and Drug Administration (FDA) in 1991 for treatment of all forms of respiratory failure in neonatal patients. In 1995, it received pre-market approved for Pediatric Application with no upper weight limit for treating selected patients failing on conventional ventilation.

There are many modes of mechanical ventilation. In medicine, mechanical ventilation is a method to mechanically assist or replace spontaneous breathing.

<span class="mw-page-title-main">Pathophysiology of acute respiratory distress syndrome</span>

The pathophysiology of acute respiratory distress syndrome involves fluid accumulation in the lungs not explained by heart failure. It is typically provoked by an acute injury to the lungs that results in flooding of the lungs' microscopic air sacs responsible for the exchange of gases such as oxygen and carbon dioxide with capillaries in the lungs. Additional common findings in ARDS include partial collapse of the lungs (atelectasis) and low levels of oxygen in the blood (hypoxemia). The clinical syndrome is associated with pathological findings including pneumonia, eosinophilic pneumonia, cryptogenic organizing pneumonia, acute fibrinous organizing pneumonia, and diffuse alveolar damage (DAD). Of these, the pathology most commonly associated with ARDS is DAD, which is characterized by a diffuse inflammation of lung tissue. The triggering insult to the tissue usually results in an initial release of chemical signals and other inflammatory mediators secreted by local epithelial and endothelial cells.

Martin John Tobin is an Irish-American critical care physician, pulmonologist, and academic who is a recognised expert in acute respiratory failure, mechanical ventilation, and neuromuscular control of breathing.

References

  1. 1 2 Yang KL, Tobin MJ (May 1991). "A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation". N. Engl. J. Med. 324 (21): 1445–50. doi:10.1056/NEJM199105233242101. PMID   2023603.
  2. Yang KL, Tobin MJ (1991). "A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation". N Engl J Med. 324 (21): 1445–50. doi:10.1056/NEJM199105233242101. PMID   2023603.
  3. Meade M, Guyatt G, Cook D, Griffith L, Sinuff T, Kergl C, et al. (2001). "Predicting success in weaning from mechanical ventilation". Chest. 120 (6 Suppl): 400S–24S. doi:10.1378/chest.120.6_suppl.400s. PMID   11742961.
  4. McConville JF, Kress JP (Dec 2012). "Weaning patients from the ventilator". N Engl J Med. 367 (23): 2233–9. doi:10.1056/NEJMra1203367. PMID   23215559.