Rating curve

Last updated

In hydrology, a rating curve is a graph of discharge versus stage for a given point on a stream, usually at gauging stations, where the stream discharge is measured across the stream channel with a flow meter. [1] Numerous measurements of stream discharge are made over a range of stream stages. The rating curve is usually plotted as discharge on x-axis versus stage (surface elevation) on y-axis. [2]

The development of a rating curve involves two steps. In the first step the relationship between stage and discharge is established by measuring the stage and corresponding discharge in the river. And in the second part, stage of river is measured and discharge is calculated by using the relationship established in the first part. Stage is measured by reading a gauge installed in the river. If the stage-discharge relationship does not change with time, it is called permanent control. If the relationship does change, it is called shifting control. Shifting control is usually due to erosion or deposition of sediment at the stage measurement site. Bedrock-bottomed parts of rivers or concrete/metal weirs or structures are often, though not always, permanent controls.

If G represents stage for discharge Q, then the relationship between G and Q can possibly be approximated with an equation:

where and are rating curve constants, and is a constant which represents the gauge reading corresponding to zero discharge. The constant can be measured when a stream is flowing under "section control" as the surveyed gauge height of the lowest point of the section control feature. When a stream is flowing under "channel control" conditions, the parameter does not have a physical analogue and must be estimated by following standard methods given in literature. The parameter is typically in the range of 2.0 to 3.0 when a stream is flowing under section control, and in the range of 1.0 to 2.0 when a stream is flowing under channel control.

A stream will typically transition from section control at lower gauge heights to channel control at higher gauge heights. The transition from section control to channel control can often be inferred by a change in the slope of a rating curve when plotted on log-log graph paper.

Related Research Articles

Spacetime Mathematical model combining space and time

In physics, spacetime is any mathematical model which fuses the three dimensions of space and the one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why different observers perceive differently where and when events occur.

Stream gauge Location used to monitor surface water flow

A stream gauge, streamgage or stream gauging station is a location used by hydrologists or environmental scientists to monitor and test terrestrial bodies of water. Hydrometric measurements of water level surface elevation ("stage") and/or volumetric discharge (flow) are generally taken and observations of biota and water quality may also be made. The locations of gauging stations are often found on topographical maps. Some gauging stations are highly automated and may include telemetry capability transmitted to a central data logging facility.

Flight dynamics (fixed-wing aircraft) Science of air vehicle orientation and control in three dimensions

Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw.

Gumbel distribution Particular case of the generalized extreme value distribution

In probability theory and statistics, the Gumbel distribution is used to model the distribution of the maximum of a number of samples of various distributions.

Demand curve Graph of how much of something a consumer would buy at a certain price

In economics, a demand curve is a graph depicting the relationship between the price of a certain commodity and the quantity of that commodity that is demanded at that price. Demand curves can be used either for the price-quantity relationship for an individual consumer, or for all consumers in a particular market.

In hydrology, discharge is the volumetric flow rate of water that is transported through a given cross-sectional area. It includes any suspended solids, dissolved chemicals, or biologic material in addition to the water itself. Terms may vary between disciplines. For example, a fluvial hydrologist studying natural river systems may define discharge as streamflow, whereas an engineer operating a reservoir system may equate it with outflow, contrasted with inflow.

Bending

In applied mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element.

In statistics, econometrics, epidemiology and related disciplines, the method of instrumental variables (IV) is used to estimate causal relationships when controlled experiments are not feasible or when a treatment is not successfully delivered to every unit in a randomized experiment. Intuitively, IVs are used when an explanatory variable of interest is correlated with the error term, in which case ordinary least squares and ANOVA give biased results. A valid instrument induces changes in the explanatory variable but has no independent effect on the dependent variable, allowing a researcher to uncover the causal effect of the explanatory variable on the dependent variable.

An orifice plate is a device used for measuring flow rate, for reducing pressure or for restricting flow.

Euler–Bernoulli beam theory

Euler–Bernoulli beam theory is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral loads only. By ignoring the effects of shear deformation and rotatory inertia, it is thus a special case of Timoshenko beam theory. It was first enunciated circa 1750, but was not applied on a large scale until the development of the Eiffel Tower and the Ferris wheel in the late 19th century. Following these successful demonstrations, it quickly became a cornerstone of engineering and an enabler of the Second Industrial Revolution.

Streamflow, or channel runoff, is the flow of water in streams, rivers, and other channels, and is a major element of the water cycle. It is one component of the runoff of water from the land to waterbodies, the other component being surface runoff. Water flowing in channels comes from surface runoff from adjacent hillslopes, from groundwater flow out of the ground, and from water discharged from pipes. The discharge of water flowing in a channel is measured using stream gauges or can be estimated by the Manning equation. The record of flow over time is called a hydrograph. Flooding occurs when the volume of water exceeds the capacity of the channel.

Stability derivatives

Stability derivatives, and also control derivatives, are measures of how particular forces and moments on an aircraft change as other parameters related to stability change. For a defined "trim" flight condition, changes and oscillations occur in these parameters. Equations of motion are used to analyze these changes and oscillations. Stability and control derivatives are used to linearize (simplify) these equations of motion so the stability of the vehicle can be more readily analyzed.

Equilibrium constants are determined in order to quantify chemical equilibria. When an equilibrium constant K is expressed as a concentration quotient,

In electrochemistry, the Butler–Volmer equation, also known as Erdey-Grúz–Volmer equation, is one of the most fundamental relationships in electrochemical kinetics. It describes how the electrical current through an electrode depends on the voltage difference between the electrode and the bulk electrolyte for a simple, unimolecular redox reaction, considering that both a cathodic and an anodic reaction occur on the same electrode:

In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.

Vector control, also called field-oriented control (FOC), is a variable-frequency drive (VFD) control method in which the stator currents of a three-phase AC or brushless DC electric motor are identified as two orthogonal components that can be visualized with a vector. One component defines the magnetic flux of the motor, the other the torque. The control system of the drive calculates the corresponding current component references from the flux and torque references given by the drive's speed control. Typically proportional-integral (PI) controllers are used to keep the measured current components at their reference values. The pulse-width modulation of the variable-frequency drive defines the transistor switching according to the stator voltage references that are the output of the PI current controllers.

Stream power

Stream power originally derived by R. A. Bagnold in the 1960s is the amount of energy the water in a river or stream is exerting on the sides and bottom of the river. Stream power is the result of multiplying the density of the water, the acceleration of the water due to gravity, the volume of water flowing through the river, and the slope of that water. There are many forms of the stream power formula with varying utilities such as comparing rivers of various widths or quantify the energy required to move sediment of a certain size. Stream power is closely related to various other criterion such as stream competency and shear stress. Stream power is a valuable measurement for hydrologists and geomorphologist tackling sediment transport issues as well as for civil engineers using it in the planning and construction of roads, bridges, dams, and culverts.

RLC circuit Resistor Inductor Capacitor Circuit

An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.

In classical physics, momentum is the product of mass and velocity and is a vector quantity, but in fluid mechanics it is treated as a longitudinal quantity evaluated in the direction of flow. Additionally, it is evaluated as momentum per unit time, corresponding to the product of mass flow rate and velocity, and therefore it has units of force. The momentum forces considered in open channel flow are dynamic force – dependent of depth and flow rate – and static force – dependent of depth – both affected by gravity.

The increase in pollution of the Mississippi River has greatly affected the species that live in the water, as well as those who rely on the river for food and recreational purposes. One of the main types of pollution is an excess of nitrate caused by chemical wastes from power plants and agricultural runoffs. The watershed covers about 40% of the lower 48 states, with 7 of the 10 top agricultural producing states being within this watershed.

References

  1. R.W.Herschy (Ed.) (1999). Hydrometry—Principles and Practices. John Wiley & Sons, Chichester. pp. VI+376. ISBN   0-471-97350-5.
  2. Kennedy, E.J. (1984). Discharge ratings at gaging stations: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3 (PDF). US Government Printing Office. p. 5.