Reconstruction from zero crossings

Last updated

The problem of reconstruction from zero crossings can be stated as: given the zero crossings of a continuous signal, is it possible to reconstruct the signal (to within a constant factor)? Worded differently, what are the conditions under which a signal can be reconstructed from its zero crossings?

This problem has two parts. Firstly, proving that there is a unique reconstruction of the signal from the zero crossings, and secondly, how to actually go about reconstructing the signal. Though there have been quite a few attempts, no conclusive solution has yet been found. Ben Logan from Bell Labs wrote an article in 1977 in the Bell System Technical Journal giving some criteria under which unique reconstruction is possible. Though this has been a major step towards the solution, many people[ who? ] are dissatisfied with the type of condition that results from his article.

According to Logan, a signal is uniquely reconstructible from its zero crossings if:

  1. The signal x(t) and its Hilbert transform xt have no zeros in common with each other.
  2. The frequency-domain representation of the signal is at most 1 octave long, in other words, it is bandpass-limited between some frequencies B and 2B.

Further reading

Related Research Articles

Nyquist–Shannon sampling theorem Sufficiency theorem for reconstructing signals from samples

In the field of digital signal processing, the sampling theorem is a fundamental bridge between continuous-time signals and discrete-time signals. It establishes a sufficient condition for a sample rate that permits a discrete sequence of samples to capture all the information from a continuous-time signal of finite bandwidth.

Baseband signal that has a very narrow frequency range near zero

Baseband is a signal that has a near-zero frequency range, i.e. a spectral magnitude that is nonzero only for frequencies in the vicinity of the origin and negligible elsewhere. In telecommunications and signal processing, baseband signals are transmitted without modulation, that is, without any shift in the range of frequencies of the signal. Baseband has a low-frequency—contained within the bandwidth frequency close to 0 hertz up to a higher cut-off frequency. Baseband can be synonymous with lowpass or non-modulated, and is differentiated from passband, bandpass, carrier-modulated, intermediate frequency, or radio frequency (RF).

Direct-sequence spread spectrum Modulation technique to reduce signal interference

In telecommunications, direct-sequence spread spectrum (DSSS) is a spread-spectrum modulation technique primarily used to reduce overall signal interference. The direct-sequence modulation makes the transmitted signal wider in bandwidth than the information bandwidth. After the despreading or removal of the direct-sequence modulation in the receiver, the information bandwidth is restored, while the unintentional and intentional interference is substantially reduced.

Line code code used within a communications system for baseband transmission purposes

In telecommunication, a line code is a pattern of voltage, current, or photons used to represent digital data transmitted down a transmission line. This repertoire of signals is usually called a constrained code in data storage systems. Some signals are more prone to error than others when conveyed over a communication channel as the physics of the communication or storage medium constrains the repertoire of signals that can be used reliably.

Nyquist rate Important parameter in signal processing and sampling

In signal processing, the Nyquist rate, named after Harry Nyquist, is twice the bandwidth of a bandlimited function or a bandlimited channel. This term means two different things under two different circumstances:

  1. as a lower bound for the sample rate for alias-free signal sampling and
  2. as an upper bound for the symbol rate across a bandwidth-limited baseband channel such as a telegraph line or passband channel such as a limited radio frequency band or a frequency division multiplex channel.
Aliasing Effect that causes signals to become indistinguishable when sampled; often producing detectable aberrations

In signal processing and related disciplines, aliasing is an effect that causes different signals to become indistinguishable when sampled. It also often refers to the distortion or artifact that results when a signal reconstructed from samples is different from the original continuous signal.

Sampling (signal processing) measurement of a signal at discrete time intervals

In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of samples.

Band-pass filter filter that passes signals within a certain frequency range, and attenuates signals outside that range

A band-pass filter, also bandpass filter or BPF, is a device that passes frequencies within a certain range and rejects (attenuates) frequencies outside that range.

Quantization (signal processing)

Quantization, in mathematics and digital signal processing, is the process of mapping input values from a large set to output values in a (countable) smaller set, often with a finite number of elements. Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all lossy compression algorithms.

Undersampling

In signal processing, undersampling or bandpass sampling is a technique where one samples a bandpass-filtered signal at a sample rate below its Nyquist rate, but is still able to reconstruct the signal.

Zero crossing point where the sign of a function crossing an axis

A zero-crossing is a point where the sign of a mathematical function changes, represented by a intercept of the axis in the graph of the function. It is a commonly used term in electronics, mathematics, acoustics, and image processing.

Super-resolution imaging (SR) is a class of techniques that enhance (increase) the resolution of an imaging system. In optical SR the diffraction limit of systems is transcended, while in geometrical SR the resolution of digital imaging sensors is enhanced.

In signal processing, a filter bank is an array of band-pass filters that separates the input signal into multiple components, each one carrying a single frequency sub-band of the original signal. One application of a filter bank is a graphic equalizer, which can attenuate the components differently and recombine them into a modified version of the original signal. The process of decomposition performed by the filter bank is called analysis ; the output of analysis is referred to as a subband signal with as many subbands as there are filters in the filter bank. The reconstruction process is called synthesis, meaning reconstitution of a complete signal resulting from the filtering process.

Secure voice encrypted voice communication

Secure voice is a term in cryptography for the encryption of voice communication over a range of communication types such as radio, telephone or IP.

In a mixed-signal system, a reconstruction filter, sometimes called an anti-imaging filter, is used to construct a smooth analog signal from a digital input, as in the case of a digital to analog converter (DAC) or other sampled data output device.

Electronic filter topology electronic filter circuits without taking note of the values of the components used but only the manner in which those components are connected

Electronic filter topology defines electronic filter circuits without taking note of the values of the components used but only the manner in which those components are connected.

Digital speakers or Digital Sound Reconstruction (DSR) system are a form of loudspeaker technology. Not to be confused with modern digital formats and processing, they are yet to be developed as a mature technology, having been experimented with extensively by Bell Labs as far back as the 1920s, but not realized as commercial products.

Compressed sensing is a signal processing technique for efficiently acquiring and reconstructing a signal, by finding solutions to underdetermined linear systems. This is based on the principle that, through optimization, the sparsity of a signal can be exploited to recover it from far fewer samples than required by the Nyquist–Shannon sampling theorem. There are two conditions under which recovery is possible. The first one is sparsity, which requires the signal to be sparse in some domain. The second one is incoherence, which is applied through the isometric property, which is sufficient for sparse signals.

Analogue filters are a basic building block of signal processing much used in electronics. Amongst their many applications are the separation of an audio signal before application to bass, mid-range, and tweeter loudspeakers; the combining and later separation of multiple telephone conversations onto a single channel; the selection of a chosen radio station in a radio receiver and rejection of others.

Signal Processing is one of the important research fields that is used widely these days in different aspects of our lives. It is a wide area of research that extends from the simplest form of one-dimensional (1-D) signal processing to the complex form of multi-dimensional (M-D). In signal processing, a filter is used to remove or modify some components or features of a signal. A filter bank is an array of filters that separates the input signal into multiple components, each one carrying a single frequency sub-band of the original signal. Filter banks have a lot of applications these days. In filter banks the process of decomposition performed by the filter bank is called analysis and the reconstruction process is called synthesis. This article provides a short survey of the concepts, principles and applications of Multirate Filter Banks and Multidimensional Directional Filter Banks.