Reconstruction of attosecond beating by interference of two-photon transitions

Last updated

Reconstruction of attosecond beating by interference of two-photon transitions, more commonly known as RABBITT or RABBIT for short, is a widely used technique for obtaining the relative phase and amplitude of attosecond pulses. This technique involves the interference of two-photon interband transitions in solids. It is especially suited for diagnostics on the temporal structure of XUV pulses. The reconstruction of attosecond beating by interference of two-photon transitions is a valuable tool for studying ultrafast processes in materials and can provide insight into the dynamics of electrons in solids. [1] [2]

History

RABBITT was invented by Pierre Agostini, Harm Geert Muller and colleagues in 2001. [3]

Related Research Articles

<span class="mw-page-title-main">Ionization</span> Process by which atoms or molecules acquire charge by gaining or losing electrons

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

An attosecond is a unit of time in the International System of Units (SI) equal to 10−18 or 11 000 000 000 000 000 000 of a second. An attosecond is to a second as a second is to about 31.71 billion years. The attosecond is a newly discovered "slice of time" that is tiny but has various potential applications: it can observe oscillating molecules, the chemical bonds formed by atoms in chemical reactions, and other extremely tiny and extremely fast things.

Quantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons. Photons have been used to test many of the counter-intuitive predictions of quantum mechanics, such as entanglement and teleportation, and are a useful resource for quantum information processing.

In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond or less. Such pulses have a broadband optical spectrum, and can be created by mode-locked oscillators. Amplification of ultrashort pulses almost always requires the technique of chirped pulse amplification, in order to avoid damage to the gain medium of the amplifier.

<span class="mw-page-title-main">Electromagnetically induced transparency</span>

Electromagnetically induced transparency (EIT) is a coherent optical nonlinearity which renders a medium transparent within a narrow spectral range around an absorption line. Extreme dispersion is also created within this transparency "window" which leads to "slow light", described below. It is in essence a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium.

<span class="mw-page-title-main">Attosecond physics</span> Study of physics on quintillionth-second timescales

Attosecond physics, also known as attophysics, or more generally attosecond science, is a branch of physics that deals with light-matter interaction phenomena wherein attosecond photon pulses are used to unravel dynamical processes in matter with unprecedented time resolution.

This is a list of acronyms and other initialisms used in laser physics and laser applications.

Ultrafast laser spectroscopy is a category of spectroscopic techniques using ultrashort pulse lasers for the study of dynamics on extremely short time scales. Different methods are used to examine the dynamics of charge carriers, atoms, and molecules. Many different procedures have been developed spanning different time scales and photon energy ranges; some common methods are listed below.

High-harmonic generation (HHG) is a non-linear process during which a target is illuminated by an intense laser pulse. Under such conditions, the sample will emit the high harmonics of the generation beam. Due to the coherent nature of the process, high-harmonics generation is a prerequisite of attosecond physics.

<span class="mw-page-title-main">Günter Nimtz</span> German physicist

Günter Nimtz is a German physicist, working at the 2nd Physics Institute at the University of Cologne in Germany. He has investigated narrow-gap semiconductors and liquid crystals. His claims show that particles may travel faster than the speed of light when undergoing quantum tunneling.

Double ionization is a process of formation of doubly charged ions when laser radiation is exerted on neutral atoms or molecules. Double ionization is usually less probable than single-electron ionization. Two types of double ionization are distinguished: sequential and non-sequential.

Quantum-optical spectroscopy is a quantum-optical generalization of laser spectroscopy where matter is excited and probed with a sequence of laser pulses.

Terahertz spectroscopy detects and controls properties of matter with electromagnetic fields that are in the frequency range between a few hundred gigahertz and several terahertz. In many-body systems, several of the relevant states have an energy difference that matches with the energy of a THz photon. Therefore, THz spectroscopy provides a particularly powerful method in resolving and controlling individual transitions between different many-body states. By doing this, one gains new insights about many-body quantum kinetics and how that can be utilized in developing new technologies that are optimized up to the elementary quantum level.

<span class="mw-page-title-main">Two-photon circular dichroism</span>

Two-photon circular dichroism (TPCD), the nonlinear counterpart of electronic circular dichroism (ECD), is defined as the differences between the two-photon absorption (TPA) cross-sections obtained using left circular polarized light and right circular polarized light.

<span class="mw-page-title-main">Anne L'Huillier</span> French-Swedish Nobel laureate physicist

Anne Geneviève L'Huillier is a French physicist, and professor of atomic physics at Lund University in Sweden.

<span class="mw-page-title-main">Resonance ionization</span> Process to excite an atom beyond its ionization potential to form an ion

Resonance ionization is a process in optical physics used to excite a specific atom beyond its ionization potential to form an ion using a beam of photons irradiated from a pulsed laser light. In resonance ionization, the absorption or emission properties of the emitted photons are not considered, rather only the resulting excited ions are mass-selected, detected and measured. Depending on the laser light source used, one electron can be removed from each atom so that resonance ionization produces an efficient selectivity in two ways: elemental selectivity in ionization and isotopic selectivity in measurement.

<span class="mw-page-title-main">Fabrizio Carbone</span> Italian and Swiss physicist

Fabrizio Carbone is an Italian and Swiss physicist and currently an Associate Professor at École Polytechnique Fédérale de Lausanne (EPFL). His research focuses on the study of matter in out of equilibrium conditions using ultrafast spectroscopy, diffraction and imaging techniques. In 2015, he attracted international attention by publishing a photography of light displaying both its quantum and classical nature.

Attosecond chronoscopy are measurement techniques for attosecond-scale delays of atomic and molecular single photon processes like photoemission and photoionization. Ionization-delay measurements in atomic targets provide a wealth of information about the timing of the photoelectric effect, resonances, electron correlations and transport.

Photon-Induced Near-field Electron Microscopy (PINEM) is a variant of the Ultrafast Transmission Electron Microscopy technique and is based on the inelastic coupling between electrons and photons in presence of a surface or a nanostructure. This method allows one to investigate time-varying nanoscale electromagnetic fields in an electron microscope.

<span class="mw-page-title-main">Pierre Agostini</span> French physicist (born 1941)

Pierre Agostini is a French experimental physicist and Emeritus professor at the Ohio State University in the United States, known for his pioneering work in strong-field laser physics and attosecond science. He is especially known for the observation of above-threshold ionization and the invention of the reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) technique for characterization of attosecond light pulses. He was jointly awarded the 2023 Nobel Prize in Physics.

References

  1. Varju, Katalin; Johnsson, Per; Lopez, Rodrigo; Remetter, Thomas; Gustafsson, E; Mauritsson, J; Gaarde, MB; Schafer, KJ; Erny, C; Sola, I; Zair, A; Constant, E; Cormier, E; Mevel, E; L'Huillier, Anne (2005). "Experimental studies of attosecond pulse trains". Laser Physics. 15 (6): 888–898. ISSN   1054-660X.
  2. Isinger, M.; Busto, D.; Mikaelsson, S.; Zhong, S.; Guo, C.; Salières, P.; Arnold, C. L.; L'Huillier, A.; Gisselbrecht, M. (20 May 2019). "Accuracy and precision of the RABBIT technique". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 377 (2145): 20170475. doi: 10.1098/rsta.2017.0475 . PMC   6452058 .
  3. Paul, P. M.; Toma, E. S.; Breger, P.; Mullot, G.; Augé, F.; Balcou, Ph.; Muller, H. G.; Agostini, P. (June 2001). "Observation of a Train of Attosecond Pulses from High Harmonic Generation". Science. 292 (5522): 1689–1692. doi:10.1126/science.1059413.