Recovery effect

Last updated

The recovery effect is a phenomenon observed in battery usage where the available energy is less than the difference between energy charged and energy consumed. Intuitively, this is because the energy has been consumed from the edge of the battery and the charge has not yet diffused evenly around the battery. [1]

When power is extracted continuously voltage decreases in a smooth curve, but the recovery effect can result in the voltage partially increasing if the current is interrupted. [2]

The KiBaM battery model [3] describes the recovery effect for lead-acid batteries and is also a good approximation to the observed effects in Li-ion batteries. [1] In some batteries, the gains from the recovery life can extend battery life by up to 45% by alternating discharging and inactive periods rather than constantly discharging. [4] The size of the recovery effect depends on the battery load, recovery time and depth of discharge. [5]

Even though the recovery effect phenomenon is prominent in the lead acid battery chemistry, its existence in alkaline, Ni-MH and Li-Ion batteries is still questionable. For instance, a systematic experimental case study [6] shows that an intermittent discharge current in case of alkaline, Ni-MH and Li-Ion batteries results in a decreased usable energy output compared to a continuous discharge current of the same average value. This is primarily due to the increased overpotential experienced due to the high peak currents of the intermittent discharge over the continuous discharge current of same average value.

See also

Related Research Articles

<span class="mw-page-title-main">Nickel–metal hydride battery</span> Type of rechargeable battery

A nickel–metal hydride battery is a type of rechargeable battery. The chemical reaction at the positive electrode is similar to that of the nickel-cadmium cell (NiCd), with both using nickel oxide hydroxide (NiOOH). However, the negative electrodes use a hydrogen-absorbing alloy instead of cadmium. NiMH batteries can have two to three times the capacity of NiCd batteries of the same size, with significantly higher energy density, although only about half that of lithium-ion batteries.

<span class="mw-page-title-main">Nickel–cadmium battery</span> Type of rechargeable battery

The nickel–cadmium battery is a type of rechargeable battery using nickel oxide hydroxide and metallic cadmium as electrodes. The abbreviation Ni–Cd is derived from the chemical symbols of nickel (Ni) and cadmium (Cd): the abbreviation NiCad is a registered trademark of SAFT Corporation, although this brand name is commonly used to describe all Ni–Cd batteries.

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: within the next 30 years, their volumetric energy density increased threefold while their cost dropped tenfold.

<span class="mw-page-title-main">Rechargeable battery</span> Type of electrical battery

A rechargeable battery, storage battery, or secondary cell, is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or primary battery, which is supplied fully charged and discarded after use. It is composed of one or more electrochemical cells. The term "accumulator" is used as it accumulates and stores energy through a reversible electrochemical reaction. Rechargeable batteries are produced in many different shapes and sizes, ranging from button cells to megawatt systems connected to stabilize an electrical distribution network. Several different combinations of electrode materials and electrolytes are used, including lead–acid, zinc–air, nickel–cadmium (NiCd), nickel–metal hydride (NiMH), lithium-ion (Li-ion), lithium iron phosphate (LiFePO4), and lithium-ion polymer.

<span class="mw-page-title-main">Alkaline battery</span> Type of electrical cell

An alkaline battery is a type of primary battery where the electrolyte has a pH value above 7. Typically these batteries derive energy from the reaction between zinc metal and manganese dioxide.

A primary battery or primary cell is a battery that is designed to be used once and discarded, and not recharged with electricity and reused like a secondary cell. In general, the electrochemical reaction occurring in the cell is not reversible, rendering the cell unrechargeable. As a primary cell is used, chemical reactions in the battery use up the chemicals that generate the power; when they are gone, the battery stops producing electricity. In contrast, in a secondary cell, the reaction can be reversed by running a current into the cell with a battery charger to recharge it, regenerating the chemical reactants. Primary cells are made in a range of standard sizes to power small household appliances such as flashlights and portable radios.

<span class="mw-page-title-main">AA battery</span> Standardized type of battery

The AA battery is a standard size single cell cylindrical dry battery. The IEC 60086 system calls the size R6, and ANSI C18 calls it 15. It is named UM-3 by JIS of Japan. Historically, it is known as D14, U12 – later U7, or HP7 in official documentation in the United Kingdom, or a pen cell.

<span class="mw-page-title-main">Battery pack</span> Set of batteries or battery cells

A battery pack is a set of any number of (preferably) identical batteries or individual battery cells. They may be configured in a series, parallel or a mixture of both to deliver the desired voltage and current. The term battery pack is often used in reference to cordless tools, radio-controlled hobby toys, and battery electric vehicles.

<span class="mw-page-title-main">Battery charger</span> Device used to provide electricity

A battery charger, recharger, or simply charger, is a device that stores energy in a battery by running an electric current through it. The charging protocol depends on the size and type of the battery being charged. Some battery types have high tolerance for overcharging and can be recharged by connection to a constant voltage source or a constant current source, depending on battery type. Simple chargers of this type must be manually disconnected at the end of the charge cycle. Other battery types use a timer to cut off when charging should be complete. Other battery types cannot withstand over-charging, becoming damaged, over heating or even exploding. The charger may have temperature or voltage sensing circuits and a microprocessor controller to safely adjust the charging current and voltage, determine the state of charge, and cut off at the end of charge. Chargers may elevate the output voltage proportionally with current to compensate for impedance in the wires.

<span class="mw-page-title-main">Flow battery</span> Type of electrochemical cell

A flow battery, or redox flow battery, is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane. Ion transfer inside the cell occurs through the membrane while both liquids circulate in their own respective space. Cell voltage is chemically determined by the Nernst equation and ranges, in practical applications, from 1.0 to 2.43 volts. The energy capacity is a function of the electrolyte volume and the power is a function of the surface area of the electrodes.

<span class="mw-page-title-main">Nickel–zinc battery</span> Type of rechargeable battery

A nickel–zinc battery is a type of rechargeable battery similar to nickel–cadmium batteries, but with a higher voltage of 1.6 V.

<span class="mw-page-title-main">History of the battery</span> History of electricity source

Batteries provided the primary source of electricity before the development of electric generators and electrical grids around the end of the 19th century. Successive improvements in battery technology facilitated major electrical advances, from early scientific studies to the rise of telegraphs and telephones, eventually leading to portable computers, mobile phones, electric cars, and many other electrical devices.

State of charge (SoC) quantifies the remaining capacity available in a battery at a given time and in relation to a given state of ageing. It is usually expressed as percentage. An alternative form of the same measure is the depth of discharge (DoD), calculated as 1 − SoC. It refers to the amount of charge that may been used up if the cell is fully discharged. State of charge is normally used when discussing the current state of a battery in use, while depth of discharge is most often used to discuss a constant variation of state of charge during repeated cycles.

In electronics, the cut-off voltage is the voltage at which a battery is considered fully discharged, beyond which further discharge could cause harm. Some electronic devices, such as cell phones, will automatically shut down when the cut-off voltage has been reached.

A battery management system (BMS) is any electronic system that manages a rechargeable battery, such as by protecting the battery from operating outside its safe operating area, monitoring its state, calculating secondary data, reporting that data, controlling its environment, authenticating it and / or balancing it.

<span class="mw-page-title-main">Electric battery</span> Power source with electrochemical cells

An electric battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices. When a battery is supplying power, its positive terminal is the cathode and its negative terminal is the anode. The terminal marked negative is the source of electrons that will flow through an external electric circuit to the positive terminal. When a battery is connected to an external electric load, a redox reaction converts high-energy reactants to lower-energy products, and the free-energy difference is delivered to the external circuit as electrical energy. Historically the term "battery" specifically referred to a device composed of multiple cells; however, the usage has evolved to include devices composed of a single cell.

Electronic systems’ power consumption has been a real challenge for Hardware and Software designers as well as users especially in portable devices like cell phones and laptop computers. Power consumption also has been an issue for many industries that use computer systems heavily such as Internet service providers using servers or companies with many employees using computers and other computational devices. Many different approaches have been discovered by researchers to estimate power consumption efficiently. This survey paper focuses on the different methods where power consumption can be estimated or measured in real-time.

Ambient backscatter uses existing radio frequency signals, such as radio, television and mobile telephony, to transmit data without a battery or power grid connection. Each such device uses an antenna to pick up an existing signal and convert it into tens to hundreds of microwatts of electricity. It uses that power to modify and reflect the signal with encoded data. Antennas on other devices, in turn, detect that signal and can respond accordingly.

Ramesh Govindan is an Indian-American professor of computer science. He is the Northrop Grumman Chair in Engineering and Professor of Computer Science and Electrical Engineering at the University of Southern California.

<span class="mw-page-title-main">Electric car charging methods</span>

Various methods exist for recharging the batteries of electric cars. Currently, the largest concern surrounding electric vehicle transportation is the total travel range available before the need to recharge. The longest range recorded till date was 606.2 miles, achieved by a Tesla Model 3. However, this was conducted in very controlled conditions where the car maintained a constant speed without the added drain of the air conditioning compressor. Typically, the battery would last for approximately 300 miles - the equivalent to three days of city commuting in warmer weather, or one day in colder weather. With these limitations, long-distance trips are currently unsuited for an electric car unless rapid charging stations are available on the route of the trip.

References

  1. 1 2 Boker, U.; Henzinger, T. A.; Radhakrishna, A. (2014). "Battery transition systems" (PDF). Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL '14. p. 595. doi:10.1145/2535838.2535875. ISBN   9781450325448. S2CID   14690528.
  2. Fuhs, Allen (2008). "Multifaceted Complexity of Batteries". Hybrid Vehicles. doi:10.1201/9781420075359.ch6. ISBN   978-1-4200-7534-2.
  3. Manwell, J. F.; McGowan, J. G. (1993). "Lead acid battery storage model for hybrid energy systems". Solar Energy. 50 (5): 399. Bibcode:1993SoEn...50..399M. doi:10.1016/0038-092X(93)90060-2.
  4. Chau, C. K.; Qin, F.; Sayed, S.; Wahab, M.; Yang, Y. (2010). "Harnessing battery recovery effect in wireless sensor networks: Experiments and analysis". IEEE Journal on Selected Areas in Communications . 28 (7): 1222. CiteSeerX   10.1.1.189.3815 . doi:10.1109/JSAC.2010.100926. S2CID   18123622.
  5. Rakhmatov, D.; Vrudhula, S.; Wallach, D. A. (2003). "A model for battery lifetime analysis for organizing applications on a pocket computer". IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 11 (6): 1019. doi:10.1109/TVLSI.2003.819320.
  6. Narayanaswamy, Swaminathan; Schlueter, Steffen; Steinhorst, Sebastian; Lukasiewycz, Martin; Chakraborty, Samarjit; Hoster, Harry Ernst (18 May 2016). "On Battery Recovery Effect in Wireless Sensor Nodes" (PDF). ACM Transactions on Design Automation of Electronic Systems. 21 (4): 1–28. doi:10.1145/2890501. S2CID   17666250.