A recursive transition network ("RTN") is a graph theoretical schematic used to represent the rules of a context-free grammar. RTNs have application to programming languages, natural language and lexical analysis. Any sentence that is constructed according to the rules of an RTN [1] is said to be "well-formed". The structural elements of a well-formed sentence may also be well-formed sentences by themselves, or they may be simpler structures. This is why RTNs are described as recursive. [2]
The Chomsky hierarchy in the fields of formal language theory, computer science, and linguistics, is a containment hierarchy of classes of formal grammars. A formal grammar describes how to form strings from a language's vocabulary that are valid according to the language's syntax. The linguist Noam Chomsky theorized that four different classes of formal grammars existed that could generate increasingly complex languages. Each class can also completely generate the language of all inferior classes.
In formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules can be applied to a nonterminal symbol regardless of its context. In particular, in a context-free grammar, each production rule is of the form
In computer science, the Earley parser is an algorithm for parsing strings that belong to a given context-free language, though it may suffer problems with certain nullable grammars. The algorithm, named after its inventor, Jay Earley, is a chart parser that uses dynamic programming; it is mainly used for parsing in computational linguistics. It was first introduced in his dissertation in 1968.
In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules called a formal grammar.
In computer science, LR parsers are a type of bottom-up parser that analyse deterministic context-free languages in linear time. There are several variants of LR parsers: SLR parsers, LALR parsers, canonical LR(1) parsers, minimal LR(1) parsers, and generalized LR parsers. LR parsers can be generated by a parser generator from a formal grammar defining the syntax of the language to be parsed. They are widely used for the processing of computer languages.
In computer science, an LL parser is a top-down parser for a restricted context-free language. It parses the input from Left to right, performing Leftmost derivation of the sentence.
In computer science, a recursive descent parser is a kind of top-down parser built from a set of mutually recursive procedures where each such procedure implements one of the nonterminals of the grammar. Thus the structure of the resulting program closely mirrors that of the grammar it recognizes.
Parsing, syntax analysis, or syntactic analysis is the process of analyzing a string of symbols, either in natural language, computer languages or data structures, conforming to the rules of a formal grammar. The term parsing comes from Latin pars (orationis), meaning part.
Top-down parsing in computer science is a parsing strategy where one first looks at the highest level of the parse tree and works down the parse tree by using the rewriting rules of a formal grammar. LL parsers are a type of parser that uses a top-down parsing strategy.
Top-Down Parsing Language (TDPL) is a type of analytic formal grammar developed by Alexander Birman in the early 1970s in order to study formally the behavior of a common class of practical top-down parsers that support a limited form of backtracking. Birman originally named his formalism the TMG Schema (TS), after TMG, an early parser generator, but it was later given the name TDPL by Aho and Ullman in their classic anthology The Theory of Parsing, Translation and Compiling.
In computer science, a parsing expression grammar (PEG) is a type of analytic formal grammar, i.e. it describes a formal language in terms of a set of rules for recognizing strings in the language. The formalism was introduced by Bryan Ford in 2004 and is closely related to the family of top-down parsing languages introduced in the early 1970s. Syntactically, PEGs also look similar to context-free grammars (CFGs), but they have a different interpretation: the choice operator selects the first match in PEG, while it is ambiguous in CFG. This is closer to how string recognition tends to be done in practice, e.g. by a recursive descent parser.
An augmented transition network or ATN is a type of graph theoretic structure used in the operational definition of formal languages, used especially in parsing relatively complex natural languages, and having wide application in artificial intelligence. An ATN can, theoretically, analyze the structure of any sentence, however complicated. ATN are modified transition networks and an extension of RTNs.
Conjunctive grammars are a class of formal grammars studied in formal language theory. They extend the basic type of grammars, the context-free grammars, with a conjunction operation. Besides explicit conjunction, conjunctive grammars allow implicit disjunction represented by multiple rules for a single nonterminal symbol, which is the only logical connective expressible in context-free grammars. Conjunction can be used, in particular, to specify intersection of languages. A further extension of conjunctive grammars known as Boolean grammars additionally allows explicit negation.
A definite clause grammar (DCG) is a way of expressing grammar, either for natural or formal languages, in a logic programming language such as Prolog. It is closely related to the concept of attribute grammars / affix grammars. DCGs are usually associated with Prolog, but similar languages such as Mercury also include DCGs. They are called definite clause grammars because they represent a grammar as a set of definite clauses in first-order logic.
In computer science, a grammar is informally called a recursive grammar if it contains production rules that are recursive, meaning that expanding a non-terminal according to these rules can eventually lead to a string that includes the same non-terminal again. Otherwise it is called a non-recursive grammar.
An adaptive grammar is a formal grammar that explicitly provides mechanisms within the formalism to allow its own production rules to be manipulated.
In formal languages, terminal and nonterminal symbols are the lexical elements used in specifying the production rules constituting a formal grammar. Terminal symbols are the elementary symbols of the language defined as part of a formal grammar. Nonterminal symbols are replaced by groups of terminal symbols according to the production rules.
In computer programming, a parser combinator is a higher-order function that accepts several parsers as input and returns a new parser as its output. In this context, a parser is a function accepting strings as input and returning some structure as output, typically a parse tree or a set of indices representing locations in the string where parsing stopped successfully. Parser combinators enable a recursive descent parsing strategy that facilitates modular piecewise construction and testing. This parsing technique is called combinatory parsing.
A formal grammar describes which strings from an alphabet of a formal language are valid according to the language's syntax. A grammar does not describe the meaning of the strings or what can be done with them in whatever context—only their form. A formal grammar is defined as a set of production rules for such strings in a formal language.
A filtered-popping recursive transition network (FPRTN), or simply filtered-popping network (FPN), is a recursive transition network (RTN) extended with a map of states to keys where returning from a subroutine jump requires the acceptor and return states to be mapped to the same key. RTNs are finite-state machines that can be seen as finite-state automata extended with a stack of return states; as well as consuming transitions and -transitions, RTNs may define call transitions. These transitions perform a subroutine jump by pushing the transition's target state onto the stack and bringing the machine to the called state. Each time an acceptor state is reached, the return state at the top of the stack is popped out, provided that the stack is not empty, and the machine is brought to this state.