Renewable Energy Foundation

Last updated

The Renewable Energy Foundation (REF), founded in 2004 by UK TV personality Noel Edmonds, [1] is a United Kingdom-based registered charity with a stated aim of promoting the development of sustainable energy technologies. It has been characterised by its critics as an anti-wind farm organization. [2]

Contents

Activity

The REF's primary activity is commissioning and writing reports to provide information on energy issues.

Since 2006, the REF has published a comprehensive set of statistics, describing in detail the performance of renewable energy generators in the UK that are registered under the Renewables Obligation. [3] On 2 February 2011, the REF released a report critical of wind power, saying it would lead to higher prices for consumers. [4] [5]

The REF also publishes constraint payments made by the National Grid Electricity System Operator to wind farms to reduce output. These payments are made when excess electricity is being generated in a particular region and a grid bottleneck prevents that electricity being exported to a region where the electricity could be used. [6] Wind farm constraint payments reached a record £125 million in 2018, with Scottish wind farms receiving £115 million of this total. [7]

In 2023, the REF published a paper titled "The Economics of Utility-Scale Solar Generation". [8]

Criticism

The REF has frequently argued against wind farm expansion, and the organization has frequently been accused of in fact being anti-wind, rather than pro-renewable energy.

Critics such as Maria McCaffery, chief executive of RenewableUK, a pro-wind trade body, says the Renewable Energy Foundation's true purpose is diametrically opposed to the interests of the wind energy industry. "It is an anti-wind lobbying organisation," she told BusinessGreen. "I'd like to know where the renewable energy part of their remit is. They don't foster or promote or develop, they just try to undermine the case for wind energy all the time." [9]

In 2011 it was revealed that it had been in discussion in April 2008 with the Charities Commission about its possibly overly political nature. [10]

Related Research Articles

<span class="mw-page-title-main">Electricity generation</span> Process of generating electrical power

Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery to end users or its storage.

Distributed generation, also distributed energy, on-site generation (OSG), or district/decentralized energy, is electrical generation and storage performed by a variety of small, grid-connected or distribution system-connected devices referred to as distributed energy resources (DER).

<span class="mw-page-title-main">Microgeneration</span> Small-scale heating and electric power creation

Microgeneration is the small-scale production of heat or electric power from a "low carbon source," as an alternative or supplement to traditional centralized grid-connected power.

<span class="mw-page-title-main">Capacity factor</span> Electrical production measure

The net capacity factor is the unitless ratio of actual electrical energy output over a given period of time to the theoretical maximum electrical energy output over that period. The theoretical maximum energy output of a given installation is defined as that due to its continuous operation at full nameplate capacity over the relevant period. The capacity factor can be calculated for any electricity producing installation, such as a fuel consuming power plant or one using renewable energy, such as wind or the sun. The average capacity factor can also be defined for any class of such installations, and can be used to compare different types of electricity production.

<span class="mw-page-title-main">Wind power in the United Kingdom</span>

The United Kingdom is the best location for wind power in Europe and one of the best in the world. The combination of long coastline, shallow water and strong winds make offshore wind unusually effective.

<span class="mw-page-title-main">Solar power in Australia</span>

Solar power is a fast-growing industry in Australia. As of September 2023, Australia's over 3.60 million solar PV installations had a combined capacity of 32.9 GW photovoltaic (PV) solar power, of which at least 3,823 MW were installed in the preceding 12 months. In 2019, 59 solar PV projects with a combined capacity of 2,881 MW were either under construction, constructed or due to start construction having reached financial closure. Solar accounted for 12.4% of Australia's total electrical energy production in 2021.

<span class="mw-page-title-main">Renewable energy in Scotland</span>

The production of renewable energy in Scotland is a topic that came to the fore in technical, economic, and political terms during the opening years of the 21st century. The natural resource base for renewable energy is high by European, and even global standards, with the most important potential sources being wind, wave, and tide. Renewables generate almost all of Scotland's electricity, mostly from the country's wind power.

<span class="mw-page-title-main">Wind power in Texas</span> Electricity from wind in one U.S. state

Wind power in Texas, a portion of total energy in Texas, consists of over 150 wind farms, which together have a total nameplate capacity of over 30,000 MW. If Texas were a country, it would rank fifth in the world: The installed wind capacity in Texas exceeds installed wind capacity in all countries but China, the United States, Germany and India. Texas produces the most wind power of any U.S. state. According to the Electric Reliability Council of Texas (ERCOT), wind power accounted for at least 15.7% of the electricity generated in Texas during 2017, as wind was 17.4% of electricity generated in ERCOT, which manages 90% of Texas's power. ERCOT set a new wind output record of nearly 19.7 GW at 7:19 pm Central Standard Time on Monday, January 21, 2019.

<span class="mw-page-title-main">Renewable energy in the United States</span>

According to data from the US Energy Information Administration, renewable energy accounted for about 13.1% of total primary energy consumption and about 21.5% of total utility-scale electricity generation in the United States in 2022.

Financial incentives for photovoltaics are incentives offered to electricity consumers to install and operate solar-electric generating systems, also known as photovoltaics (PV).

<span class="mw-page-title-main">Solar power in the United Kingdom</span>

Solar power represented a very small part of electricity production in the United Kingdom until the 2010s when it increased rapidly, thanks to feed-in tariff (FIT) subsidies and the falling cost of photovoltaic (PV) panels.

A feed-in tariff is a policy mechanism designed to accelerate investment in renewable energy technologies by offering long-term contracts to renewable energy producers. This means promising renewable energy producers an above-market price and providing price certainty and long-term contracts that help finance renewable energy investments. Typically, FITs award different prices to different sources of renewable energy in order to encourage the development of one technology over another. For example, technologies such as wind power and solar PV are awarded a higher price per kWh than tidal power. FITs often include a "digression": a gradual decrease of the price or tariff in order to follow and encourage technological cost reductions.

<span class="mw-page-title-main">Solar power</span> Conversion of energy from sunlight into electricity

Solar power, also known as solar electricity, is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV) or indirectly using concentrated solar power. Photovoltaic cells convert light into an electric current using the photovoltaic effect. Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight to a hot spot, often to drive a steam turbine.

The electricity sectors of the Republic of Ireland and Northern Ireland are integrated and supply 2.5 million customers from a combination of coal, peat, natural gas, wind and hydropower. In 2022, 34 TWh were generated. In 2018 natural gas produced 51.8%, while wind turbines generated 28.1%, coal 7%, and peat 6.8% of Ireland's average electricity demand. In 2020 wind turbines generated 36.3% of Ireland's electrical demand, one of the highest wind power proportions in the world. While the United Kingdom was one of the first countries in the world to deploy commercial nuclear power plants, the island of Ireland has never had a nuclear power plant built on either side of the Irish border. Nuclear power in Ireland was discussed in the 1960s and 1970s but ultimately never phased in, with legislation now in place explicitly forbidding its introduction.

<span class="mw-page-title-main">Solar power in California</span>

Solar power has been growing rapidly in the U.S. state of California because of high insolation, community support, declining solar costs, and a renewable portfolio standard which requires that 60% of California's electricity come from renewable resources by 2030, with 100% by 2045. Much of this is expected to come from solar power via photovoltaic facilities or concentrated solar power facilities.

Different methods of electricity generation can incur a variety of different costs, which can be divided into three general categories: 1) wholesale costs, or all costs paid by utilities associated with acquiring and distributing electricity to consumers, 2) retail costs paid by consumers, and 3) external costs, or externalities, imposed on society.

<span class="mw-page-title-main">Electricity sector in Sri Lanka</span>

The electricity sector in Sri Lanka has a national grid which is primarily powered by hydroelectric power and thermal power, with sources such as photovoltaics and wind power in early stages of deployment. Although potential sites are being identified, other power sources such as geothermal, nuclear, solar thermal and wave power are not used in the power generation process for the national grid.

A feed-in tariff (FIT) is paid by energy suppliers in the United Kingdom if a property or organisation generates their own electricity using technology such as solar panels or wind turbines and feeds any surplus back to the grid. The FIT scheme entered into law by the Energy Act 2008 and took effect from April 2010. The scheme closed to new applicants on 31 March 2019.

<span class="mw-page-title-main">Variable renewable energy</span> Class of renewable energy sources

Variable renewable energy (VRE) or intermittent renewable energy sources (IRES) are renewable energy sources that are not dispatchable due to their fluctuating nature, such as wind power and solar power, as opposed to controllable renewable energy sources, such as dammed hydroelectricity or biomass, or relatively constant sources, such as geothermal power.

<span class="mw-page-title-main">Photovoltaic power station</span> Large-scale photovoltaic system

A photovoltaic power station, also known as a solar park, solar farm, or solar power plant, is a large-scale grid-connected photovoltaic power system designed for the supply of merchant power. They are different from most building-mounted and other decentralized solar power because they supply power at the utility level, rather than to a local user or users. Utility-scale solar is sometimes used to describe this type of project.

References

  1. "Noel Edmonds on how the Government is ignoring the energy crisis". mirror. 8 June 2008.
  2. Brown, Paul (2004-07-14). "Edmonds joins fight against wind farms". The Guardian. ISSN   0261-3077 . Retrieved 2023-04-22.
  3. REF Website
  4. Ingham, John (3 February 2011). "Houston family 'saddened' by cause of death ruling". Express.co.uk.
  5. "Low Wind Power Output 2010". Archived from the original on 2011-02-15.
  6. REF Website
  7. MacAskill, Mark. "Idle wind farms pull in £125m for dumping energy".
  8. Hughes, Gordon (2023). "Th Economics of Utility-Scale Solar Generation" (PDF). Renewable Energy Foundation.
  9. "Who are the Renewable Energy Foundation?". businessgreen.com. 16 February 2011.
  10. Leo Hickman (18 May 2011). "Will the real Renewable Energy Foundation please stand up?". the Guardian.