Residuum (geology)

Last updated

Residuum is weathered rock that is not transported by erosion, contributing in time to the formation of soil. It is distinguished from other types of parent material in that it is composed solely of mineral, not organic, material, and it remains in place rather than being moved by the action of wind, water, or gravity.

Contents

Characteristics

Parent material is one of the soil forming factors defined as “unconsolidated organic and mineral materials in which soils form”.[ citation needed ] Making parent material an important part of the soil forming process. The other soil forming factors are climate, organisms, relief and time. Parent materials that are not residual are classified by their mode of transport into a system. [1] These modes of transport are by wind (aeloian), water, gravity (colluvial), ice (glacial till), lakes (lacustrine), oceans (marine) or in place (non transported). [1]

Soils derived from residuum are called residual soils. These soils are expected to be mineralogically similar to their underlying bedrock. [2] While residuum is similar to the term regolith, it is more specific. While regolith refers to all unconsolidated earth materials above the solid bed rock, including transported sediments such as sand or alluvium, residuum is strictly a non transported parent material. However, parent materials formed in place or "in-situ" can further be classified as saprolite or residuum. Residuum differs from saprolite through its structure and degree of weathering. Saprolite is commonly referring to weathered material retaining details or structural features of the bedrock. The distinguishing feature between these is that residuum no longer retains the structural features or details of its bed rock.[ citation needed ] It has undergone greater transformation and experienced a decrease in volume from its origins as saprolite and bedrock. This is what is known as consolidation.

Production

Residuum and their associated residual soils are a produced primarily through chemical weathering of their bedrock. Residuum occurs in all temperature regimes and locations. Their thickness varies with climates. In temperate climate its presence is in relatively lower amounts occurring as a “thin blanket of loose material above the bedrock. In tropical climates it can be much thicker”. [3] A certain degree of landscape stability is inferred for residual soils. [4] Identification and survey of these soils are most conclusive "where fresh outcrops are rare and all surface materials look alike". [3] In contrast, "a decrease in the amount of rock fragments as depth increases, especially over saprolite, indicates that the soil materials probably has been transported down slope". [5] Identification of residuum is relevant in soil science and geology because accurate identification conveys direct and implicit info about soil itself, the environment in which it formed, and its current environment. Soils provide a records of prevailing and past environments climates and human activities and much more. [4]

In limestone terrains the boundary between bedrock and residuum is commonly very sharp, but may be highly irregular, defining pinnacles and even isolated blocks of fresh bedrock surrounded by reddish residual silts and clays derived from its decomposition. Resistant materials such as chert, silicified fossils, or beds of sandstone remain and may concentrate on the surface as float.

Related Research Articles

<span class="mw-page-title-main">Sedimentary rock</span> Rock formed by the deposition and cementation of particles

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

<span class="mw-page-title-main">Sediment</span> Particulate solid matter that is deposited on the surface of land

Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching the sea bed deposited by sedimentation; if buried, they may eventually become sandstone and siltstone through lithification.

<span class="mw-page-title-main">Weathering</span> Deterioration of rocks and minerals through exposure to the elements

Weathering is the deterioration of rocks, soils and minerals through contact with water, atmospheric gases, sunlight, and biological organisms. Weathering occurs in situ, and so is distinct from erosion, which involves the transport of rocks and minerals by agents such as water, ice, snow, wind, waves and gravity.

<span class="mw-page-title-main">Geomorphology</span> Scientific study of landforms

Geomorphology is the scientific study of the origin and evolution of topographic and bathymetric features generated by physical, chemical or biological processes operating at or near Earth's surface. Geomorphologists seek to understand why landscapes look the way they do, to understand landform and terrain history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling. Geomorphologists work within disciplines such as physical geography, geology, geodesy, engineering geology, archaeology, climatology, and geotechnical engineering. This broad base of interests contributes to many research styles and interests within the field.

Soil formation, also known as pedogenesis, is the process of soil genesis as regulated by the effects of place, environment, and history. Biogeochemical processes act to both create and destroy order (anisotropy) within soils. These alterations lead to the development of layers, termed soil horizons, distinguished by differences in color, structure, texture, and chemistry. These features occur in patterns of soil type distribution, forming in response to differences in soil forming factors.

<span class="mw-page-title-main">Regolith</span> A layer of loose, heterogeneous superficial deposits covering solid rock

Regolith is a blanket of unconsolidated, loose, heterogeneous superficial deposits covering solid rock. It includes dust, broken rocks, and other related materials and is present on Earth, the Moon, Mars, some asteroids, and other terrestrial planets and moons.

<span class="mw-page-title-main">Spheroidal weathering</span> Form of chemical weathering that affects jointed bedrock

Spheroidal weathering is a form of chemical weathering that affects jointed bedrock and results in the formation of concentric or spherical layers of highly decayed rock within weathered bedrock that is known as saprolite. When saprolite is exposed by physical erosion, these concentric layers peel (spall) off as concentric shells much like the layers of a peeled onion. Within saprolite, spheroidal weathering often creates rounded boulders, known as corestones or woolsack, of relatively unweathered rock. Spheroidal weathering is also called onion skin weathering,concentric weathering,spherical weathering, or woolsack weathering.

<span class="mw-page-title-main">Bedrock</span> Solid rock under loose surface material

In geology, bedrock is solid rock that lies under loose material (regolith) within the crust of Earth or another terrestrial planet.

The pedosphere is the outermost layer of the Earth that is composed of soil and subject to soil formation processes. It exists at the interface of the lithosphere, atmosphere, hydrosphere and biosphere. The pedosphere is the skin of the Earth and only develops when there is a dynamic interaction between the atmosphere, biosphere, lithosphere and the hydrosphere. The pedosphere is the foundation of terrestrial life on Earth.

A soil horizon is a layer parallel to the soil surface whose physical, chemical and biological characteristics differ from the layers above and beneath. Horizons are defined in many cases by obvious physical features, mainly colour and texture. These may be described both in absolute terms and in terms relative to the surrounding material, i.e. 'coarser' or 'sandier' than the horizons above and below.

<span class="mw-page-title-main">Paleosol</span> Soil buried under sediment or not representative of current environmental conditions

In geoscience, paleosol is an ancient soil that formed in the past. The definition of the term in geology and paleontology is slightly different from its use in soil science.

<span class="mw-page-title-main">Entisol</span> Type of soil

Entisols are soils, as defined under USDA soil taxonomy, that do not show any profile development other than an A-horizon. Entisols have no diagnostic horizons, and are unaltered from their parent material, which could be unconsolidated sediment, or rock. Entisols are the most common soils, occupying about 16% of the global ice-free land area.

Parent material is the underlying geological material in which soil horizons form. Soils typically inherit a great deal of structure and minerals from their parent material, and, as such, are often classified based upon their contents of consolidated or unconsolidated mineral material that has undergone some degree of physical or chemical weathering and the mode by which the materials were most recently transported.

<span class="mw-page-title-main">Caliche</span> Calcium carbonate based concretion of sediment

Caliche is a sedimentary rock, a hardened natural cement of calcium carbonate that binds other materials—such as gravel, sand, clay, and silt. It occurs worldwide, in aridisol and mollisol soil orders—generally in arid or semiarid regions, including in central and western Australia, in the Kalahari Desert, in the High Plains of the western United States, in the Sonoran Desert, Chihuahuan Desert and Mojave Desert of North America, and in eastern Saudi Arabia at Al-Hasa. Caliche is also known as calcrete or kankar. It belongs to the duricrusts. The term caliche is borrowed from Spanish and is originally from the Latin word calx, meaning lime.

<span class="mw-page-title-main">Paleopedology</span> Discipline studying soils of the past eras

Paleopedology is the discipline that studies soils of past geological eras, from quite recent (Quaternary) to the earliest periods of the Earth's history. Paleopedology can be seen either as a branch of soil science (pedology) or of paleontology, since the methods it uses are in many ways a well-defined combination of the two disciplines.

<span class="mw-page-title-main">Brown earth</span> Soil type

Brown earth is a type of soil. Brown earths are mostly located between 35° and 55° north of the Equator. The largest expanses cover western and central Europe, large areas of western and trans-Uralian Russia, the east coast of America and eastern Asia. Here, areas of brown earth soil types are found particularly in Japan, Korea, China, eastern Australia and New Zealand. Brown earths cover 45% of the land in England and Wales. They are common in lowland areas on permeable parent material. The most common vegetation types are deciduous woodland and grassland. Due to the reasonable natural fertility of brown earths, large tracts of deciduous woodland have been cut down and the land is now used for farming. They are normally located in regions with a humid temperate climate. Rainfall totals are moderate, usually below 76 cm per year, and temperatures range from 4 °C in the winter to 18 °C in the summer. They are well-drained fertile soils with a pH of between 5.0 and 6.5.

<span class="mw-page-title-main">Abrasion (geology)</span> Process of erosion

Abrasion is a process of erosion that occurs when material being transported wears away at a surface over time, commonly happens in ice and glaciers. The primary process of abrasion is physical weathering. Its the process of friction caused by scuffing, scratching, wearing down, marring, and rubbing away of materials. The intensity of abrasion depends on the hardness, concentration, velocity and mass of the moving particles. Abrasion generally occurs in four ways: glaciation slowly grinds rocks picked up by ice against rock surfaces; solid objects transported in river channels make abrasive surface contact with the bed and walls; objects transported in waves breaking on coastlines; and by wind transporting sand or small stones against surface rocks. Abrasion is the natural scratching of bedrock by a continuous movement of snow or glacier downhill. This is caused by a force, friction, vibration, or internal deformation of the ice, and by sliding over the rocks and sediments at the base that causes the glacier to move.

<span class="mw-page-title-main">Saprolite</span> Chemically weathered rock

Saprolite is a chemically weathered rock. Saprolites form in the lower zones of soil profiles and represent deep weathering of the bedrock surface. In most outcrops, its color comes from ferric compounds. Deeply weathered profiles are widespread on the continental landmasses between latitudes 35°N and 35°S.

The Goldich dissolution series is a method of predicting the relative stability or weathering rate of common igneous minerals on the Earth's surface, with minerals that form at higher temperatures and pressures less stable on the surface than minerals that form at lower temperatures and pressures.

Astropedology is the study of very ancient paleosols and meteorites relevant to the origin of life and different planetary soil systems. It is a branch of soil science (pedology) concerned with soils of the distant geologic past and of other planetary bodies to understand our place in the universe. A geologic definition of soil is “a material at the surface of a planetary body modified in place by physical, chemical or biological processes”. Soils are sometimes defined by biological activity but can also be defined as planetary surfaces altered in place by biologic, chemical, or physical processes. By this definition, the question for Martian soils and paleosols becomes, were they alive? Astropedology symposia are a new focus for scientific meetings on soil science. Advancements in understanding the chemical and physical mechanisms of pedogenesis on other planetary bodies in part led the Soil Science Society of America (SSSA) in 2017 to update the definition of soil to: "The layer(s) of generally loose mineral and/or organic material that are affected by physical, chemical, and/or biological processes at or near the planetary surface and usually hold liquids, gases, and biota and support plants". Despite our meager understanding of extraterrestrial soils, their diversity may raise the question of how we might classify them, or formally compare them with our Earth-based soils. One option is to simply use our present soil classification schemes, in which case many extraterrestrial soils would be Entisols in the United States Soil Taxonomy (ST) or Regosols in the World Reference Base for Soil Resources (WRB). However, applying an Earth-based system to such dissimilar settings is debatable. Another option is to distinguish the (largely) biotic Earth from the abiotic Solar System, and include all non-Earth soils in a new Order or Reference Group, which might be tentatively called Astrosols.

References

  1. 1 2 "Plant and Soil Sciences eLibrary". passel.unl.edu. Retrieved 2018-05-09.
  2. PLASTER, R. W.; SHERWOOD, W. C. (1971). "Bedrock Weathering and Residual Soil Formation in Central Virginia". Geological Society of America Bulletin. 82 (10): 2813. Bibcode:1971GSAB...82.2813P. doi:10.1130/0016-7606(1971)82[2813:bwarsf]2.0.co;2. ISSN   0016-7606.
  3. 1 2 Gandhi, S.M.; Sarkar, B.C. (2016). Essentials of Mineral Exploration and Evaluation. Elsevier. pp. 125–158. doi:10.1016/b978-0-12-805329-4.00013-2. ISBN   9780128053294.
  4. 1 2 "SSM-Ch. 2. Landscapes, Geomorphology, and Site Description". Archived from the original on 2018-05-10. Retrieved 2018-05-09.
  5. Shamlin, Carolyn (April 1982). Soil Survey Manual: Agriculture Handbook. Government Printing Office. p. 54.