Resonances in scattering from potentials

Last updated

In quantum mechanics, resonance cross section occurs in the context of quantum scattering theory, which deals with studying the scattering of quantum particles from potentials. The scattering problem deals with the calculation of flux distribution of scattered particles/waves as a function of the potential, and of the state (characterized by conservation of momentum/energy) of the incident particle. For a free quantum particle incident on the potential, the plane wave solution to the time-independent Schrödinger wave equation is:

Contents

For one-dimensional problems, the transmission coefficient is of interest. It is defined as:

where is the probability current density. This gives the fraction of incident beam of particles that makes it through the potential. For three-dimensional problems, one would calculate the scattering cross-section , which, roughly speaking, is the total area of the incident beam which is scattered. Another quantity of relevance is the partial cross-section, , which denotes the scattering cross section for a partial wave of a definite angular momentum eigenstate. These quantities naturally depend on , the wave-vector of the incident wave, which is related to its energy by:

The values of these quantities of interest, the transmission coefficient (in case of one dimensional potentials), and the partial cross-section show peaks in their variation with the incident energy . These phenomena are called resonances.

One-dimensional case

Mathematical description

A one-dimensional finite square potential is given by

The sign of determines whether the square potential is a well or a barrier. To study the phenomena of resonance, the time-independent Schrödinger equation for a stationary state of a massive particle with energy is solved:

The wave function solutions for the three regions are

Here, and are the wave numbers in the potential-free region and within the potential respectively:

To calculate , a coefficient in the wave function is set as , which corresponds to the fact that there is no wave incident on the potential from the right. Imposing the condition that the wave function and its derivative should be continuous at the well/barrier boundaries and , the relations between the coefficients are found, which allows to be found as:

It follows that the transmission coefficient reaches its maximum value of 1 when:

for any integer value . This is the resonance condition, which leads to the peaking of to its maxima, called resonance.

Physical picture (Standing de Broglie Waves and the Fabry-Pérot Etalon)

From the above expression, resonance occurs when the distance covered by the particle in traversing the well and back () is an integral multiple of the De Broglie wavelength of a particle inside the potential (). For , reflections at potential discontinuities are not accompanied by any phase change. [1] Therefore, resonances correspond to the formation of standing waves within the potential barrier/well. At resonance, the waves incident on the potential at and the waves reflecting between the walls of the potential are in phase, and reinforce each other. Far from resonances, standing waves can't be formed. Then, waves reflecting between both walls of the potential (at and ) and the wave transmitted through are out of phase, and destroy each other by interference. The physics is similar to that of transmission in Fabry–Pérot interferometer in optics, where the resonance condition and functional form of the transmission coefficient are the same.

Plot of the transmission co-efficient against (E/V0) for a shape factor of 30 Resonance shapef30.jpg
Plot of the transmission co-efficient against (E/V0) for a shape factor of 30
Plot of the transmission co-efficient against (E/V0) for a shape factor of 13 Resonance shapef13.jpg
Plot of the transmission co-efficient against (E/V0) for a shape factor of 13

Nature of resonance curves

The transmission coefficient swings between its maximum of 1 and minimum of as a function of the length of square well () with a period of . The minima of the transmission tend to in the limit of large energy , resulting in more shallow resonances, and inversely tend to in the limit of low energy , resulting in sharper resonances. This is demonstrated in plots of transmission coefficient against incident particle energy for fixed values of the shape factor, defined as

  1. Claude Cohen-Tannaoudji, Bernanrd Diu, Frank Laloe.(1992), Quantum Mechanics ( Vol. 1), Wiley-VCH, p.73

Related Research Articles

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject. The equation is named after Erwin Schrödinger, who postulated the equation in 1925, and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

<span class="mw-page-title-main">Bloch's theorem</span> Fundamental theorem in condensed matter physics

In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential take the form of a plane wave modulated by a periodic function. The theorem is named after the physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written

<span class="mw-page-title-main">Wave packet</span> Short "burst" or "envelope" of restricted wave action that travels as a unit

In physics, a wave packet is a short "burst" or "envelope" of localized wave action that travels as a unit. A wave packet can be analyzed into, or can be synthesized from, an infinite set of component sinusoidal waves of different wavenumbers, with phases and amplitudes such that they interfere constructively only over a small region of space, and destructively elsewhere. Each component wave function, and hence the wave packet, are solutions of a wave equation. Depending on the wave equation, the wave packet's profile may remain constant or it may change (dispersion) while propagating.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

In physics, quantum tunnelling, barrier penetration, or simply tunnelling is a quantum mechanical phenomenon in which an object such as an electron or atom passes through a potential energy barrier that, according to classical mechanics, the object does not have sufficient energy to enter or surmount.

<span class="mw-page-title-main">Pilot wave theory</span> One interpretation of quantum mechanics

In theoretical physics, the pilot wave theory, also known as Bohmian mechanics, was the first known example of a hidden-variable theory, presented by Louis de Broglie in 1927. Its more modern version, the de Broglie–Bohm theory, interprets quantum mechanics as a deterministic theory, avoiding troublesome notions such as wave–particle duality, instantaneous wave function collapse, and the paradox of Schrödinger's cat. To solve these problems, the theory is inherently nonlocal.

In physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies. In classical physics, this means the particle is present in a "field-free" space. In quantum mechanics, it means the particle is in a region of uniform potential, usually set to zero in the region of interest since the potential can be arbitrarily set to zero at any point in space.

The finite potential well is a concept from quantum mechanics. It is an extension of the infinite potential well, in which a particle is confined to a "box", but one which has finite potential "walls". Unlike the infinite potential well, there is a probability associated with the particle being found outside the box. The quantum mechanical interpretation is unlike the classical interpretation, where if the total energy of the particle is less than the potential energy barrier of the walls it cannot be found outside the box. In the quantum interpretation, there is a non-zero probability of the particle being outside the box even when the energy of the particle is less than the potential energy barrier of the walls.

In quantum mechanics, the probability current is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.

<span class="mw-page-title-main">Transmission coefficient</span>

The transmission coefficient is used in physics and electrical engineering when wave propagation in a medium containing discontinuities is considered. A transmission coefficient describes the amplitude, intensity, or total power of a transmitted wave relative to an incident wave.

In quantum mechanics and scattering theory, the one-dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves. The problem consists of solving the time-independent Schrödinger equation for a particle with a step-like potential in one dimension. Typically, the potential is modeled as a Heaviside step function.

<span class="mw-page-title-main">Rectangular potential barrier</span> Area, where a potential exhibits a local maximum

In quantum mechanics, the rectangularpotential barrier is a standard one-dimensional problem that demonstrates the phenomena of wave-mechanical tunneling and wave-mechanical reflection. The problem consists of solving the one-dimensional time-independent Schrödinger equation for a particle encountering a rectangular potential energy barrier. It is usually assumed, as here, that a free particle impinges on the barrier from the left.

In quantum mechanics the delta potential is a potential well mathematically described by the Dirac delta function - a generalized function. Qualitatively, it corresponds to a potential which is zero everywhere, except at a single point, where it takes an infinite value. This can be used to simulate situations where a particle is free to move in two regions of space with a barrier between the two regions. For example, an electron can move almost freely in a conducting material, but if two conducting surfaces are put close together, the interface between them acts as a barrier for the electron that can be approximated by a delta potential.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

The Gross–Pitaevskii equation describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model.

In quantum mechanics and quantum field theory, a Schrödinger field, named after Erwin Schrödinger, is a quantum field which obeys the Schrödinger equation. While any situation described by a Schrödinger field can also be described by a many-body Schrödinger equation for identical particles, the field theory is more suitable for situations where the particle number changes.

In quantum mechanics, the case of a particle in a one-dimensional ring is similar to the particle in a box. The particle follows the path of a semicircle from to where it cannot escape, because the potential from to is infinite. Instead there is total reflection, meaning the particle bounces back and forth between to . The Schrödinger equation for a free particle which is restricted to a semicircle is

The Gamow factor, Sommerfeld factor or Gamow–Sommerfeld factor, named after its discoverer George Gamow or after Arnold Sommerfeld, is a probability factor for two nuclear particles' chance of overcoming the Coulomb barrier in order to undergo nuclear reactions, for example in nuclear fusion. By classical physics, there is almost no possibility for protons to fuse by crossing each other's Coulomb barrier at temperatures commonly observed to cause fusion, such as those found in the sun. When George Gamow instead applied quantum mechanics to the problem, he found that there was a significant chance for the fusion due to tunneling.

In quantum mechanics, universality is the observation that there are properties for a large class of systems that are independent of the exact structural details of the system. The notion of universality is familiar in the study and application of statistical mechanics to various physical systems since its introduction in a very precise fashion by Leo Kadanoff. Although not quite the same, it is closely related to universality as applied to quantum systems. This concept links to the essence of renormalization and scaling in many problems. Renormalization is based on the notion that a measurement device of wavelength is insensitive to details of structure at distances much smaller than . An important consequence of universality is that one can mimic the real short-structure distance of the measurement device and the system to be measured by simple short-distance structure. Even though it is seen that scaling, universality and renormalization are closely related, they are not to be used interchangeably.

References