Rider-Ericsson Engine Company

Last updated

The US Rider-Ericsson Engine Company was the successor of the DeLamater Iron Works and the Rider Engine Company, having bought from both companies their extensive plants and entire stocks of engines and patterns, covering all styles of Rider and Ericsson hot air pumping engines brought out by both of the old companies since 1844, excepting the original Ericsson engine, the patterns of which were burned in the DeLameter fire of 1888.

Cornelius H. DeLamater American industrialist

Cornelius Henry DeLamater was an industrialist who owned DeLamater Iron Works in New York City. The steam boilers and machinery for the ironclad USS Monitor was built in DeLamater's foundry during the Civil War. Swedish marine engineer and inventor John Ericsson considered DeLamater his closest, most intimate friend.

Contents

Engines

The company specialized in hot air pumping engines. A hot air engine is an external combustion engine. All hot air engines consist of a hot side and a cold side. Mechanical energy is derived from a hot air engine as air is repeatedly heated and cooled, expanding and contracting, and imparting pressure upon a reciprocating piston.

Hot air engine

A hot air engine is any heat engine that uses the expansion and contraction of air under the influence of a temperature change to convert thermal energy into mechanical work. These engines may be based on a number of thermodynamic cycles encompassing both open cycle devices such as those of Sir George Cayley and John Ericsson and the closed cycle engine of Robert Stirling. Hot air engines are distinct from the better known internal combustion based engine and steam engine.

Early hot air engines

In his patent of 1759, Henry Wood was the first to document the powering an engine by the changing volume of air as it changed temperature. George Cayley was the first to build a working model in 1807. The Reverend Robert Stirling is generally credited with the "invention" of the hot air engine in 1816 for his development of a "regenerator" which conserves heat energy as the air moves between the hot and cold sides of the engine. Technically, not all hot air engines utilize regenerators, but the term hot air engine and Stirling engine are sometimes used interchangeably.

George Cayley British aeronautics engineer

Sir George Cayley, 6th Baronet was an English engineer, inventor, and aviator. He is one of the most important people in the history of aeronautics. Many consider him to be the first true scientific aerial investigator and the first person to understand the underlying principles and forces of flight.

A regenerative heat exchanger, or more commonly a regenerator, is a type of heat exchanger where heat from the hot fluid is intermittently stored in a thermal storage medium before it is transferred to the cold fluid. To accomplish this the hot fluid is brought into contact with the heat storage medium, then the fluid is displaced with the cold fluid, which absorbs the heat.

Stirling engine sterlingmotor

A Stirling engine is a heat engine that operates by cyclic compression and expansion of air or other gas at different temperatures, such that there is a net conversion of heat energy to mechanical work. More specifically, the Stirling engine is a closed-cycle regenerative heat engine with a permanently gaseous working fluid. Closed-cycle, in this context, means a thermodynamic system in which the working fluid is permanently contained within the system, and regenerative describes the use of a specific type of internal heat exchanger and thermal store, known as the regenerator. Strictly speaking, the inclusion of the regenerator is what differentiates a Stirling engine from other closed cycle hot air engines.

Rider's engine

Rider engine Rider-hot-air-engine.jpg
Rider engine

The Rider style engine is an "alpha" engine which uses two separate cylinders. As air in the hot side cylinder heats, it expands, driving the piston upward. The crankshaft now moves the cold side piston upward, drawing the hot air over to the cold side. The air cools, contracts, and pulls the hot side piston downward. The cold side piston then pushes the cool air over to the hot side, and the cycle repeats.

Crankshaft

A crankshaft—related to crank—is a mechanical part able to perform a conversion between reciprocating motion and rotational motion. In a reciprocating engine, it translates reciprocating motion of the piston into rotational motion; whereas in a reciprocating compressor, it converts the rotational motion into reciprocating motion. In order to do the conversion between two motions, the crankshaft has "crank throws" or "crankpins", additional bearing surfaces whose axis is offset from that of the crank, to which the "big ends" of the connecting rods from each cylinder attach.

Ericsson's engine

Ericsson engine Ericsson hot air engine.jpg
Ericsson engine

The Ericsson style engine is a "beta" engine, which contains both the power piston and displacer within one cylinder. The cylinder has a hot end, within the firebox, and a cold end, surrounded by a water jacket. As the air is heated within the cylinder, the air expands, driving the piston upward. The displacer next moves downward, pushing the air from the hot side into the cool side of the cylinder. The air then contracts, pulling the piston downward. The displacer then moves the air from the cool side to the hot side, the cycle begins again.

Piston moving component of reciprocating engines that is contained by a cylinder and is made gas-tight by piston rings

A piston is a component of reciprocating engines, reciprocating pumps, gas compressors and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from expanding gas in the cylinder to the crankshaft via a piston rod and/or connecting rod. In a pump, the function is reversed and force is transferred from the crankshaft to the piston for the purpose of compressing or ejecting the fluid in the cylinder. In some engines, the piston also acts as a valve by covering and uncovering ports in the cylinder.

Related Research Articles

Heat engine system that performs the conversion of heat or thermal energy to mechanical work

In thermodynamics and engineering, a heat engine is a system that converts heat or thermal energy—and chemical energy—to mechanical energy, which can then be used to do mechanical work. It does this by bringing a working substance from a higher state temperature to a lower state temperature. A heat source generates thermal energy that brings the working substance to the high temperature state. The working substance generates work in the working body of the engine while transferring heat to the colder sink until it reaches a low temperature state. During this process some of the thermal energy is converted into work by exploiting the properties of the working substance. The working substance can be any system with a non-zero heat capacity, but it usually is a gas or liquid. During this process, a lot of heat is lost to the surroundings and so cannot be converted to work.

Reciprocating engine heat engine that uses one or more reciprocating pistons to convert pressure into a rotating motion

A reciprocating engine, also often known as a piston engine, is typically a heat engine that uses one or more reciprocating pistons to convert pressure into a rotating motion. This article describes the common features of all types. The main types are: the internal combustion engine, used extensively in motor vehicles; the steam engine, the mainstay of the Industrial Revolution; and the niche application Stirling engine. Internal combustion engines are further classified in two ways: either a spark-ignition (SI) engine, where the spark plug initiates the combustion; or a compression-ignition (CI) engine, where the air within the cylinder is compressed, thus heating it, so that the heated air ignites fuel that is injected then or earlier.

Watt steam engine

The Watt steam engine, alternatively known as the Boulton and Watt steam engine, was the first practical steam engine and was one of the driving forces of the industrial revolution. James Watt developed the design sporadically from 1763 to 1775 with support from Matthew Boulton, Watt's design saved so much on fuel costs compared to earlier designs that they were licenced based on the amount of fuel they would save. Watt never ceased developing the steam engine, introducing double-acting designs and various systems for taking off rotary power. Watt's design became synonymous with steam engines, and it was many years before significantly new designs began to replace the basic Watt design.

Robert Stirling clergyman, engineer, inventor of the Stirling engine

The Reverend Dr Robert Stirling was a Scottish clergyman, and inventor of the Stirling engine.

Stirling cycle thermodynamic cycle that describes the general class of Stirling devices. This includes the original Stirling engine that was invented, developed and patented in 1816 by Robert Stirling with help from his brother, an engineer

The Stirling cycle is a thermodynamic cycle that describes the general class of Stirling devices. This includes the original Stirling engine that was invented, developed and patented in 1816 by Robert Stirling with help from his brother, an engineer.

Thermoacoustic heat engine

Thermoacoustic engines are thermoacoustic devices which use high-amplitude sound waves to pump heat from one place to another, or conversely use a heat difference to induce high-amplitude sound waves.

A Cryocooler is a standalone cooler, usually of table-top size. It is used to cool some particular application to cryogenic temperatures. A review is given by Radebaugh. The present Article deals with various types of cryocoolers and is partly based on a paper by De Waele.

Ericsson cycle

The Ericsson cycle is named after inventor John Ericsson who designed and built many unique heat engines based on various thermodynamic cycles. He is credited with inventing two unique heat engine cycles and developing practical engines based on these cycles. His first cycle is now known as the closed Brayton cycle, while his second cycle is what is now called the Ericsson cycle. Ericsson is one of the few who built open-cycle engines, but he also built closed-cycle ones.

Cylinder (engine) central working part of a reciprocating engine or pump, the space in which a piston travels, often equipped with a cylinder liner

A cylinder is the central working part of a reciprocating engine or pump, the space in which a piston travels. Multiple cylinders are commonly arranged side by side in a bank, or engine block, which is typically cast from aluminum or cast iron before receiving precision machine work. Cylinders may be sleeved or sleeveless. A sleeveless engine may also be referred to as a "parent-bore engine".

Fluidyne engine

A Fluidyne engine is an alpha or gamma type Stirling engine with one or more liquidpistons. It contains a working gas, and either two liquid pistons or one liquid piston and a displacer.

Thermomechanical generator

The Harwell TMG Stirling engine, an abbreviation for "Thermo-Mechanical Generator", was invented in 1967 by E. H. Cooke-Yarborough at the Harwell Labs of the United Kingdom Atomic Energy Authority. It was intended to be a remote electrical power source with low cost and very long life, albeit by sacrificing some efficiency. The TMG was at one time the only Stirling engine sold by a manufacturer, namely HoMach Systems Ltd., England.

Radiator (engine cooling) heat-exchanging component of liquid cooled engines

Radiators are heat exchangers used for cooling internal combustion engines, mainly in automobiles but also in piston-engined aircraft, railway locomotives, motorcycles, stationary generating plant or any similar use of such an engine.

Vacuum engine

A vacuum engine derives its force from air pressure against one side of the piston, which has a partial vacuum on the other side of it. At the beginning of an outstroke, a valve in the head of the cylinder opens and admits a charge of burning gas and air, which is trapped by the closing of the valve and expands. Towards the end of the stroke the charge comes into contact with a water- or air-cooled part of the cylinder and is chilled, causing a sudden drop in pressure sufficient to suck the piston – which is open towards the crank – back on the return stroke. The valve opens again in time for the piston to expel the burnt gases before the next outstroke begins.

Malone engine

The Malone engine is a liquid-based engine invented by J.F.J Malone of Newcastle, England. The engine used high temperature water as its working fluid, and was therefore also referred to as the Hot Water Engine. A US patent, describing it with Mercury or an Mercury-Lead Alloy as working fluid, for the engine was granted in 1924, Malone's first 50 hp prototype was completed in 1925, and used coal to heat high pressure water sealed inside a cylinder. Malone's second prototype, demonstrated in 1931, also produced 50 hp but in a much smaller design.

Applications of the Stirling engine

Applications of the Stirling engine range from mechanical propulsion to heating and cooling to electrical generation systems. A Stirling engine is a heat engine operating by cyclic compression and expansion of air or other gas, the "working fluid", at different temperature levels such that there is a net conversion of heat to mechanical work. The Stirling cycle heat engine can also be driven in reverse, using a mechanical energy input to drive heat transfer in a reversed direction.

Internal combustion engine engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine (ICE) is a heat engine where the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is applied typically to pistons, turbine blades, rotor or a nozzle. This force moves the component over a distance, transforming chemical energy into useful mechanical energy.

Hopper cooling

Hopper cooling is a simple form of water cooling used for small stationary engines. The defining feature of hopper cooling, amongst other water-cooled engines, is that there is no radiator. Cooling water is heated by the engine and evaporates from the surface of the hopper as steam.

Manson-Guise Engine

A Manson-Guise engine is an improved version of a Manson engine. It is a type of hot air engine, converting a temperature difference into motion. There is a hot side and a cold side to the engine. Providing there is a large enough temperature difference between the two sides the engine will run. The Manson-Guise engine is probably the simplest type of hot air engines having only a single con-rod, with a displacer piston and power piston that move at the same time. Manson-Guise engines seem to be fairly unique in the fact that they can run in either direction.