Ripple-down rules

Last updated

Ripple-down rules (RDR) are a way of approaching knowledge acquisition. Knowledge acquisition refers to the transfer of knowledge from human experts to knowledge-based systems.

Contents

Introductory material

Ripple-down rules are an incremental approach to knowledge acquisition and covers a family of techniques. RDR were proposed by Compton and Jansen based on experience maintaining the expert system GARVAN-ES1 (Compton and Jansen 1988). The original GARVAN-ES1 (Horn et al. 1985) employed a knowledge acquisition process, based on Test Driven Development, where new cases that were poorly classified by the system were added to a data base and then used to incrementally refine the knowledge base. The added cases, whose conclusions conflicted with the advice of the system were termed "cornerstone cases". Consequently, the data base grew iteratively with each refinement to the knowledge. The data base could then be used to test changes to the knowledge. Knowledge acquisition tools, similar to those provided by Teiresias were developed to find and help modify the conflicting rules. The tools would display the rules fired by each case and suggestions to "edit" the knowledge to remove the conflicts.

In the RDR framework, the human expert's knowledge is acquired based on the current context and is added incrementally. Compton and Jansen argued that the expert's knowledge is to some extent 'made up' to justify why she was right, not to explain how she reached this right interpretation (or conclusion). The justification is based on features that are identified from the current case. The expert creates a rule for classifying cases corresponding to a particular context. This rule is unlikely to classify all cases belonging to the class. Compton and Jansen asserted that it is not possible to create a single elegant context free rule as the knowledge we communicate is a justification in a context. This implies that there is no absolute knowledge that acts as foundation of other knowledge, since knowledge is only true in a context (Compton and Jansen 1990).

Methodology

Ripple-down rules consist of a data structure and knowledge acquisition scenarios. Human experts' knowledge is stored in the data structure. The knowledge is coded as a set of rules. The process of transferring human experts' knowledge to Knowledge-based systems in RDR is explained in knowledge acquisition scenario.

Data structure

There are various structures of ripple-down rules, for example single-classification ripple-down rules (SCRDR), multiple-classification ripple-down rules (MCRDR), nested ripple-down rules (NRDR) and repeat-inference multiple-classification ripple-down rules (RIMCRDR). The data structure of RDR described here is SCRDR, which is the simplest structure.

The data structure is similar to a decision tree. Each node has a rule; the format of this rule is IF cond1 AND cond2 AND ... AND condN THEN conclusion. Cond1 is a condition (boolean evaluation), for example A=1, isGreater(A,5) and average(A,">",average(B)). Each node has exactly two successor nodes, these successor nodes are connected to predecessor node by "ELSE" or "EXCEPT".

An example of SCRDR tree (defined recursively) is shown below:

IF (OutLook = "SUNNY" AND Temperature = "COOL") THEN PLAY="TENNIS" EXCEPT Child-1 ELSE Child-2

where Child-1 and Child-2 are also SCRDR trees. For example, Child-1 is:

IF (Wind = "WINDY" AND Humidity = "HIGH") THEN Play="SQUASH" EXCEPT NoChild ELSE NoChild

Knowledge-acquisition scenario

Human experts provide a case to the system and they add a new rule to correct the classification of a misclassified case. For example, rule Child-1 is added to correct classification of case [OutLook="SUNNY", Temperature="COOL", Wind="WINDY", Humidity="HIGH", ForeCast="STORM", Play="SQUASH"]. This case is misclassified as Play="TENNIS".

When a rule is constructed by the human experts, the conditions of this rule should be satisfied by the misclassified case and also they should NOT be satisfied by any previous cases classified correctly by the parent rule (which in this context is the first rule).

Implementations

Below is a list of known implementations of RDR:

See also

Related Research Articles

<span class="mw-page-title-main">Expert system</span> Computer system emulating the decision-making ability of a human expert

In artificial intelligence, an expert system is a computer system emulating the decision-making ability of a human expert. Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if–then rules rather than through conventional procedural code. The first expert systems were created in the 1970s and then proliferated in the 1980s. Expert systems were among the first truly successful forms of artificial intelligence (AI) software. An expert system is divided into two subsystems: the inference engine and the knowledge base. The knowledge base represents facts and rules. The inference engine applies the rules to the known facts to deduce new facts. Inference engines can also include explanation and debugging abilities.

The Rete algorithm is a pattern matching algorithm for implementing rule-based systems. The algorithm was developed to efficiently apply many rules or patterns to many objects, or facts, in a knowledge base. It is used to determine which of the system's rules should fire based on its data store, its facts. The Rete algorithm was designed by Charles L. Forgy of Carnegie Mellon University, first published in a working paper in 1974, and later elaborated in his 1979 Ph.D. thesis and a 1982 paper.

Parsing, syntax analysis, or syntactic analysis is the process of analyzing a string of symbols, either in natural language, computer languages or data structures, conforming to the rules of a formal grammar. The term parsing comes from Latin pars (orationis), meaning part.

Semantic memory refers to general world knowledge that humans have accumulated throughout their lives. This general knowledge is intertwined in experience and dependent on culture. We can learn about new concepts by applying our knowledge learned from things in the past.

<span class="mw-page-title-main">Decision tree learning</span> Machine learning algorithm

Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning. In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

In corpus linguistics, part-of-speech tagging, also called grammatical tagging is the process of marking up a word in a text (corpus) as corresponding to a particular part of speech, based on both its definition and its context. A simplified form of this is commonly taught to school-age children, in the identification of words as nouns, verbs, adjectives, adverbs, etc.

Reason maintenance is a knowledge representation approach to efficient handling of inferred information that is explicitly stored. Reason maintenance distinguishes between base facts, which can be defeated, and derived facts. As such it differs from belief revision which, in its basic form, assumes that all facts are equally important. Reason maintenance was originally developed as a technique for implementing problem solvers. It encompasses a variety of techniques that share a common architecture: two components—a reasoner and a reason maintenance system—communicate with each other via an interface. The reasoner uses the reason maintenance system to record its inferences and justifications of the inferences. The reasoner also informs the reason maintenance system which are the currently valid base facts (assumptions). The reason maintenance system uses the information to compute the truth value of the stored derived facts and to restore consistency if an inconsistency is derived.

COBWEB is an incremental system for hierarchical conceptual clustering. COBWEB was invented by Professor Douglas H. Fisher, currently at Vanderbilt University.

Configurators, also known as choice boards, design systems, toolkits, or co-design platforms, are responsible for guiding the user through the configuration process. Different variations are represented, visualized, assessed and priced which starts a learning-by-doing process for the user. While the term “configurator” or “configuration system” is quoted rather often in literature, it is used for the most part in a technical sense, addressing a software tool. The success of such an interaction system is, however, not only defined by its technological capabilities, but also by its integration in the whole sale environment, its ability to allow for learning by doing, to provide experience and process satisfaction, and its integration into the brand concept.

Conceptual clustering is a machine learning paradigm for unsupervised classification that has been defined by Ryszard S. Michalski in 1980 and developed mainly during the 1980s. It is distinguished from ordinary data clustering by generating a concept description for each generated class. Most conceptual clustering methods are capable of generating hierarchical category structures; see Categorization for more information on hierarchy. Conceptual clustering is closely related to formal concept analysis, decision tree learning, and mixture model learning.

An information filtering system is a system that removes redundant or unwanted information from an information stream using (semi)automated or computerized methods prior to presentation to a human user. Its main goal is the management of the information overload and increment of the semantic signal-to-noise ratio. To do this the user's profile is compared to some reference characteristics. These characteristics may originate from the information item or the user's social environment.

An incremental decision tree algorithm is an online machine learning algorithm that outputs a decision tree. Many decision tree methods, such as C4.5, construct a tree using a complete dataset. Incremental decision tree methods allow an existing tree to be updated using only new individual data instances, without having to re-process past instances. This may be useful in situations where the entire dataset is not available when the tree is updated, the original data set is too large to process or the characteristics of the data change over time.

In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes.

In network theory, link analysis is a data-analysis technique used to evaluate relationships (connections) between nodes. Relationships may be identified among various types of nodes (objects), including organizations, people and transactions. Link analysis has been used for investigation of criminal activity, computer security analysis, search engine optimization, market research, medical research, and art.

Paul Compton is an Emeritus Professor at the University of New South Wales (UNSW). He was also the former Head of the UNSW School of Computer Science and Engineering. He is known for proposing "ripple-down rules".

Taxonomy is the practice and science of categorization or classification.

Multiple-classification ripple-down rules (MCRDR) is an incremental knowledge acquisition technique which preserves the benefits and essential strategy of ripple-down rules (RDR) in handling the multiple classifications. MCRDR, the extension of RDR, is based on the assumption that the knowledge an expert provides is essentially a justification for a conclusion in a particular context.

The rules extraction system (RULES) family is a family of inductive learning that includes several covering algorithms. This family is used to build a predictive model based on given observation. It works based on the concept of separate-and-conquer to directly induce rules from a given training set and build its knowledge repository.

Fusion adaptive resonance theory is a generalization of self-organizing neural networks known as the original Adaptive Resonance Theory models for learning recognition categories across multiple pattern channels. There is a separate stream of work on fusion ARTMAP, that extends fuzzy ARTMAP consisting of two fuzzy ART modules connected by an inter-ART map field to an extended architecture consisting of multiple ART modules.

<span class="mw-page-title-main">Outline of machine learning</span> Overview of and topical guide to machine learning

The following outline is provided as an overview of and topical guide to machine learning. Machine learning is a subfield of soft computing within computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.

References