Robert Ash (engineer)

Last updated

Robert Lafayette Ash is a Professor of Mechanical & Aerospace Engineering and an Eminent Scholar [1] at Old Dominion University in Norfolk, Virginia.

Contents

Early life and education

In 1968, Ash graduated from Tulane University in New Orleans with a PhD in Mechanical and Aerospace Engineering, and in 1963, he graduated from Kansas State University with a Bachelor of Science in Mechanical Engineering. [2] Ash's father-in-law was Lewis Webb Jr., who served as the first president of Old Dominion University.

His research interests include vortical flows, non-equilibrium phenomena, space systems, and Mars resources. [2]

Publications

His most cited papers are:

Groundbreaking for the era published and notable yet, [6] Dr. Ash's In-Situ Resource Utilization (ISRU) paper, authored in 1978 as a visiting Old Dominion University (ODU) Senior Research Scientist at JPL, was the first instance of NASA research into ISRU production of liquid methane-based rocket propellants for a long-duration crewed missions to Mars' surface and return strategy. As initial detailed work of this type, it directly inspired "Mars Direct" and "Mars Semi-Direct" approaches in the following decades, although NASA shifted focus and fiscal resources to LEO and the ISS soon thereafter, versus continuing Moon-to-Mars exploration. As Mars exploration becomes more widely accepted, with the popular examples of SpaceX, Inspiration Mars, and Mars One, the trailblazing work of Dr. Robert "Bob" Ash, and those that followed, like Dr. Robert Zubrin (and others) beginning in the early 1990s, pioneered the difficult task of showing ISRU's benefits for long-duration, deep space and interplanetary surface exploration. Use of ISRU is now considered central to the feasibility of any mission to Mars or beyond, and remains an area of very active research. [7]

Related Research Articles

<span class="mw-page-title-main">Nuclear thermal rocket</span> Rocket engine that uses a nuclear reactor to generate thrust

A nuclear thermal rocket (NTR) is a type of thermal rocket where the heat from a nuclear reaction, often nuclear fission, replaces the chemical energy of the propellants in a chemical rocket. In an NTR, a working fluid, usually liquid hydrogen, is heated to a high temperature in a nuclear reactor and then expands through a rocket nozzle to create thrust. The external nuclear heat source theoretically allows a higher effective exhaust velocity and is expected to double or triple payload capacity compared to chemical propellants that store energy internally.

<span class="mw-page-title-main">Geoffrey A. Landis</span> American aerospace engineer (born 1955)

Geoffrey Alan Landis is an American aerospace engineer and author, working for the National Aeronautics and Space Administration (NASA) on planetary exploration, interstellar propulsion, solar power and photovoltaics. He holds nine patents, primarily in the field of improvements to solar cells and photovoltaic devices and has given presentations and commentary on the possibilities for interstellar travel and construction of bases on the Moon, Mars, and Venus.

<span class="mw-page-title-main">Magnetohydrodynamic drive</span> Vehicle propulsion using electromagnetic fields

A magnetohydrodynamic drive or MHD accelerator is a method for propelling vehicles using only electric and magnetic fields with no moving parts, accelerating an electrically conductive propellant with magnetohydrodynamics. The fluid is directed to the rear and as a reaction, the vehicle accelerates forward.

<span class="mw-page-title-main">Turbulence modeling</span> Use of mathematical models to simulate turbulent flow

In fluid dynamics, turbulence modeling is the construction and use of a mathematical model to predict the effects of turbulence. Turbulent flows are commonplace in most real-life scenarios, including the flow of blood through the cardiovascular system, the airflow over an aircraft wing, the re-entry of space vehicles, besides others. In spite of decades of research, there is no analytical theory to predict the evolution of these turbulent flows. The equations governing turbulent flows can only be solved directly for simple cases of flow. For most real-life turbulent flows, CFD simulations use turbulent models to predict the evolution of turbulence. These turbulence models are simplified constitutive equations that predict the statistical evolution of turbulent flows.

<span class="mw-page-title-main">In situ resource utilization</span> Astronautical use of materials harvested in outer space

In space exploration, in situ resource utilization (ISRU) is the practice of collection, processing, storing and use of materials found or manufactured on other astronomical objects that replace materials that would otherwise be brought from Earth.

A. K. M. Fazle Hussain is a professor of mechanical engineering at Texas Tech University.

<span class="mw-page-title-main">Orbital propellant depot</span> Cache of propellant used to refuel spacecraft

An orbital propellant depot is a cache of propellant that is placed in orbit around Earth or another body to allow spacecraft or the transfer stage of the spacecraft to be fueled in space. It is one of the types of space resource depots that have been proposed for enabling infrastructure-based space exploration. Many different depot concepts exist depending on the type of fuel to be supplied, location, or type of depot which may also include a propellant tanker that delivers a single load to a spacecraft at a specified orbital location and then departs. In-space fuel depots are not necessarily located near or at a space station.

Mohammed Yousuff Hussaini is an Indian born American applied mathematician. He is the Sir James Lighthill Professor of Mathematics and Computational Science & Engineering at the Florida State University, United States. Hussaini is also the holder of the TMC Eminent Scholar Chair in High Performance Computing at FSU. He is widely known for his research in scientific computation, particularly in the field of computational fluid dynamics (CFD) and Control and optimization. Hussaini co-authored the popular book Spectral Methods in Fluid Dynamics with Claudio Canuto, Alfio Quarteroni, and Thomas Zang. He is the editor-in-chief of the journal Theoretical and Computational Fluid Dynamics.

<span class="mw-page-title-main">Robert D. Braun</span> American engineer and academic

Robert David Braun is an American aerospace engineer and academic. He has served as the dean of the College of Engineering and Applied Science at the University of Colorado Boulder, the David and Andrew Lewis Professor of Space Technology at the Georgia Institute of Technology, and the NASA Chief Technologist. Currently, Dr. Braun is the Space Sector Head at the Johns Hopkins University Applied Physics Laboratory (APL).

William Kenneth George is an American-born fluid dynamicist holding both American and Swedish citizenships. He is currently senior research investigator in the Department of Aeronautics at Imperial College London. George is known for his research on both theoretical and experimental turbulence.

<span class="mw-page-title-main">Mars Oxygen ISRU Experiment</span> Mars 2020 electrochemical experiment

The Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) is a technology demonstration on the NASA Mars 2020 rover Perseverance investigating the production of oxygen on Mars. On April 20, 2021, MOXIE produced oxygen from carbon dioxide in the Martian atmosphere by using solid oxide electrolysis. This was the first experimental extraction of a natural resource from another planet for human use. The technology may be scaled up for use in a human mission to the planet to provide breathable oxygen, oxidizer, and propellant; water may also be produced by combining the produced oxygen with hydrogen.

Multiscale turbulence is a class of turbulent flows in which the chaotic motion of the fluid is forced at different length and/or time scales. This is usually achieved by immersing in a moving fluid a body with a multiscale, often fractal-like, arrangement of length scales. This arrangement of scales can be either passive or active

<span class="mw-page-title-main">Forman A. Williams</span> American academic

Forman Arthur Williams is an American academic in the field of combustion and aerospace engineering who is Emeritus Professor of Mechanical and Aerospace Engineering at the University of California San Diego.

Mujeeb R. Malik is a Pakistani born American aerospace engineer serving as Senior Aerodynamicist at NASA Langley Research Center. He is known for his research in boundary layer stability, laminar-turbulent transition, computational methods and aerodynamic simulations. He was the architect of CFD Vision 2030, a NASA-sponsored study to advance the state-of-the-art of computational fluid dynamics (CFD) by exploiting high performance computing and modern validation experiments.

Peyman Givi is a Persian-American rocket scientist and engineer.

<span class="mw-page-title-main">Joseph Katz (professor)</span> American fluid dynamicist

Joseph Katz is an Israel-born American fluid dynamicist, known for his work on experimental fluid mechanics, cavitation phenomena and multiphase flow, turbulence, turbomachinery flows and oceanography flows, flow-induced vibrations and noise, and development of optical flow diagnostics techniques, including Particle Image Velocimetry (PIV) and Holographic Particle Image Velocimetry (HPIV). As of 2005, he is the William F. Ward Sr. Distinguished Professor at the Department of Mechanical Engineering of the Whiting School of Engineering at the Johns Hopkins University.

The World Is Not Enough (WINE) is a US project developing a refuelable steam engine system for spacecraft propulsion. WINE developed a method of extracting volatiles from ice, ice-rich regolith, and hydrated soils and uses it as steam propulsion which allows the spacecraft to refuel multiple times and have an extraordinary long service lifetime. This would allow a single spacecraft to visit multiple asteroids, comets or several landing locations at an icy world such as the Moon, Mars, Pluto, Enceladus, Ganymede, Europa, etc.

In fluid dynamics, Taylor–Culick flow describes the axisymmetric flow inside a long slender cylinder with one end closed, supplied by a constant flow injection through the sidewall. The flow is named after Geoffrey Ingram Taylor and F. E. C. Culick, since Taylor showed first in 1956 that the flow inside such a configuration is inviscid and rotational and later in 1966, Culick found a self-similar solution to the problem applied to solid-propellant rocket combustion. Although the solution is derived for the inviscid equation, it satisfies the non-slip condition at the wall since, as Taylor argued, any boundary layer at the sidewall will be blown off by flow injection. Hence, the flow is referred to as quasi-viscous.

<span class="mw-page-title-main">Lunar resources</span> Potential natural resources on the Moon

The Moon bears substantial natural resources which could be exploited in the future. Potential lunar resources may encompass processable materials such as volatiles and minerals, along with geologic structures such as lava tubes that, together, might enable lunar habitation. The use of resources on the Moon may provide a means of reducing the cost and risk of lunar exploration and beyond.

<span class="mw-page-title-main">Reda R. Mankbadi</span> Egyptian-American engineer and scientist

Reda R. Mankbadi is the founding Dean of the Engineering College at Embry-Riddle Aeronautical University. He is a former NASA senior scientist at NASA's Glenn Research Center and a Fellow of the NASA Lewis Research Academy. Mankbadi has published over 150 scientific papers.

References

  1. Eminent Scholars, Old Dominion University, retrieved 2015-09-20.
  2. 1 2 "Robert Ash". Old Dominion University. Retrieved 17 September 2015.
  3. "Effect of Compliant Wall Motion on Turbulent Boundary Layers. presented at the I.U.T.A.M. Symposium on Structure of Turbulence and Drag Reduction, Physics of Fluids, 20 (10 part 11), (pp. S31-S58)". Old Dominion University. Retrieved 8 January 2016.
  4. Khorrami, Mehdi R.; Malik, Mujeeb R.; Ash, Robert L. (1989). "Application of Spectral Collocation Techniques to the Stability of Swirling Flows". Old Dominion University. 81 (1): 206–229. Bibcode:1989JCoPh..81..206K. doi:10.1016/0021-9991(89)90071-5.
  5. "Feasibility of Rocket Propellant Production on Mars". Old Dominion University. Retrieved 8 January 2016.
  6. "WIRED Article "Making Rocket Fuel on Mars (1978)"" . Retrieved 8 January 2016.
  7. "AIAA article citation (2010)" (PDF). AIAA. Retrieved 8 January 2016.