Robert Boylestad

Last updated

Robert L. Boylestad (born 1939) was professor emeritus of electrical and computer technology at Queensborough Community College, part of the City University of New York, [1] [2] and was an assistant dean in the Thayer School of Engineering of Dartmouth College. [3]

His first text, Introductory Circuit Analysis, [4] first published in 1968, over 40 years ago, is now entering its 14th edition making it one of the most successful in the field. Translations include Spanish, French, Portuguese, Greek, Taiwanese and Korean,Bangla.

Their work "Electronic Devices and Circuit Theory" is a university level text that is currently in its 11th edition (April 30, 2012) and which was initially published in 1972. While there are many other texts in the field, this one has remained a staple of scientific educators throughout the modern period of the electronics and computer revolution, and during the emergence of ubiquitous Integrated Circuits and Computers.[ citation needed ]

Books

Related Research Articles

<span class="mw-page-title-main">Computing</span> Activity involving calculations or computing machinery

Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, engineering, mathematical, technological and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology, digital art and software engineering.

Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train, which is typically generated by the switching of a transistor.

<span class="mw-page-title-main">Electrical engineering</span> Field of engineering

Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems which use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the latter half of the 19th century after the commercialization of the electric telegraph, the telephone, and electrical power generation, distribution, and use.

<span class="mw-page-title-main">Electronics</span> Branch of physics and electrical engineering

Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other electrically charged particles. Electronics is a subfield of electrical engineering, but it differs from it in that it focuses on using active devices such as transistors, diodes, and integrated circuits to control and amplify the flow of electric current and to convert it from one form to another, such as from alternating current (AC) to direct current (DC) or from analog to digital. Electronics also encompasses the fields of microelectronics, nanoelectronics, optoelectronics, and quantum electronics, which deal with the fabrication and application of electronic devices at microscopic, nanoscopic, optical, and quantum scales.

<span class="mw-page-title-main">Signal processing</span> Analysing, modifying and creating signals

Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing signals, such as sound, images, potential fields, seismic signals, altimetry processing, and scientific measurements. Signal processing techniques are used to optimize transmissions, digital storage efficiency, correcting distorted signals, subjective video quality, and to also detect or pinpoint components of interest in a measured signal.

<span class="mw-page-title-main">Ohm's law</span> Law of electrical current and voltage

Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the three mathematical equations used to describe this relationship:

In electronics, a multi-transistor configuration called the Darlington configuration is a circuit consisting of two bipolar transistors with the emitter of one transistor connected to the base of the other, such that the current amplified by the first transistor is amplified further by the second one. The collectors of both transistors are connected together. This configuration has a much higher current gain than each transistor taken separately. It acts like and is often packaged as a single transistor. It was invented in 1953 by Sidney Darlington.

<span class="mw-page-title-main">Mechatronics</span> Combination of electronics and mechanics

Mechatronics engineering also called mechatronics, is an interdisciplinary branch of engineering that focuses on the integration of mechanical, electrical and electronic engineering systems, and also includes a combination of robotics, electronics, computer science, telecommunications, systems, control, and product engineering.

<span class="mw-page-title-main">Mesh analysis</span> Circuit analysis that solves for currents

Mesh analysis is a method that is used to solve planar circuits for the currents at any place in the electrical circuit. Planar circuits are circuits that can be drawn on a plane surface with no wires crossing each other. A more general technique, called loop analysis can be applied to any circuit, planar or not. Mesh analysis and loop analysis both make use of Kirchhoff’s voltage law to arrive at a set of equations guaranteed to be solvable if the circuit has a solution. Mesh analysis is usually easier to use when the circuit is planar, compared to loop analysis.

The superposition theorem is a derived result of the superposition principle suited to the network analysis of electrical circuits. The superposition theorem states that for a linear system the response in any branch of a bilateral linear circuit having more than one independent source equals the algebraic sum of the responses caused by each independent source acting alone, where all the other independent sources are replaced by their internal impedances.

<span class="mw-page-title-main">Polarity (mutual inductance)</span> Magnetically coupled transformer winding polarities

In electrical engineering, dot marking convention, or alphanumeric marking convention, or both, can be used to denote the same relative instantaneous polarity of two mutually inductive components such as between transformer windings. These markings may be found on transformer cases beside terminals, winding leads, nameplates, schematic and wiring diagrams.

John G. Webster was an American electrical engineer and a founding pioneer in the field of biomedical engineering. In 2008, Professor Webster was awarded the University of Wisconsin, College of Engineering, Polygon Engineering Council Outstanding Instructor Award. In 2019, the Institute of Electrical and Electronics Engineers awarded him its James H. Mulligan Jr. Educational Medal for his career contributions. Professor Webster died on March 29, 2023.

Louis Nashelsky, is a Professor of Electrical and Computer Technology at Queensborough Community College of the City University of New York (CUNY). He is also Chairman of the Department of Electrical and Computer Technology.

<i>Principles of Electronics</i> Textbook for the Electronics Technician distance education program

Principles of Electronics is a 2002 book by Colin Simpson designed to accompany the Electronics Technician distance education program and contains a concise and practical overview of the basic principles, including theorems, circuit behavior and problem-solving procedures of Electronic circuits and devices. The textbook reinforces concepts with practical "real-world" applications as well as the mathematical solution, allowing readers to more easily relate the academic to the actual.

<span class="mw-page-title-main">Electronic engineering</span> Electronic engineering involved in the design of electronic circuits, devices, and their systems

Electronic engineering is a sub-discipline of electrical engineering which emerged in the early 20th century and is distinguished by the additional use of active components such as semiconductor devices to amplify and control electric current flow. Previously electrical engineering only used passive devices such as mechanical switches, resistors, inductors, and capacitors.

Passivity is a property of engineering systems, most commonly encountered in analog electronics and control systems. Typically, analog designers use passivity to refer to incrementally passive components and systems, which are incapable of power gain. In contrast, control systems engineers will use passivity to refer to thermodynamically passive ones, which consume, but do not produce, energy. As such, without context or a qualifier, the term passive is ambiguous.

<span class="mw-page-title-main">FET amplifier</span>

An FET amplifier is an amplifier that uses one or more field-effect transistors (FETs). The most common type of FET amplifier is the MOSFET amplifier, which uses metal–oxide–semiconductor FETs (MOSFETs). The main advantage of a FET used for amplification is that it has very high input impedance and low output impedance.

This article details the history of electronics engineering. Chambers Twentieth Century Dictionary (1972) defines electronics as "The science and technology of the conduction of electricity in a vacuum, a gas, or a semiconductor, and devices based thereon".

Marian Kazimierz Kazimierczuk is a Polish and American engineer and scientist specializing in power electronics, high-impact researcher, writer, and professor of technical sciences at Wright State University, Dayton, Ohio, US.

References

  1. Queensborough ECET faculty listing.
  2. Individual Member Directory, American Society for Engineering Education, 1975, p. 11.
  3. Individual Member Directory, American Society for Engineering Education, 1984, p. 17.
  4. reviewed: Donard de Cogan, "Want to switch on circuit makers?", Times Higher Education, 24 November 2000