Rocky Mountain bark beetle infestation

Last updated

The current bark beetle infestation in the Rocky Mountain region of the United States was first detected in 1996. It involved the Mountain pine beetle, which has since spread across millions of acres of dense forest land. In addition, Spruce beetle populations have also been growing in the area in recent years and are further contributing to the existing outbreak. [1] One of the main factors limiting bark beetle population growth is the temperature they can survive at and climate change has raised the average temperature in the region resulting in warmer winters and hotter, drier summers. This not only sped up the bark beetle reproduction process by providing more time per year for them to complete their developmental stages (at lower elevations they now often complete generations in one year instead of two), moisture stressing due to hotter temperatures also weakens the trees’ defense against attacks by reducing resin production. [2] Furthermore, forest management has also played a significant role as many forests in the region have very dense tree populations which facilitates faster spreading from tree to tree, as well as weakening tree defenses further by stressing them through excessive competition. [3] [4]

Contents

While the culling of the region's trees brings significant economic ramifications, ecosystems are also being profoundly impacted: affected watersheds are experiencing changes to storage and flow, and such high rates of tree mortality alters the exchange of gases between the biosphere and atmosphere. Forest disturbances such as fires usually have nebulous and far-ranging ecological impacts, and bark beetle infestations are no exception. Though many species are benefiting from the infestation and are showing higher rates of occurrence in affected forests, many show the opposite effect. Most notably, elk are avoiding beetle-killed forests even though they traditionally adapt well to many disturbances and capitalize on them, representing significant decrease in elk habitat. [5] The loss of transpiration from beetle-killed trees has also increase groundwater contributions to affected watersheds, which may affect riverine ecosystems, as well as human water usage, by altering factors like water supply and quality. [6] Finally, though forests act as carbon sinks that absorb atmospheric carbon, the high rate of tree mortality not only reduces forests’ capacity to absorb carbon, the large amounts of carbon already stored in beetle-killed trees is being released back into the atmosphere as they decompose. [7]

Bark beetles

The bark beetle is an insect of the subfamily Scolytinae, containing around 6000 species, which live and reproduce in the inner bark of trees. Upon successfully entering a tree, they mate and the female starts to burrow a labyrinth of tunnels running along the inner bark called egg galleries where she then lays her eggs. The larvae themselves continue feeding and excavate further across the inner bark until they reach adulthood and leave to find a new host to start the process anew. While most species of bark beetles prefer dead or dying hosts, some attack live trees with the preference of mature and over-mature ones, as well as trees weakened by external factors. Due to the bark beetle's tendency to target trees that are weak, late in life, or dead, they play an important role in the forest's nutrient cycle by hastening the decomposition of old trees to make way for the new. However, more aggressive species can become pests as they amass large populations, attack healthier trees, and turn into an infestation. The only direct defense trees have against bark beetles is the resin released when sapwood is breached, which can fill in the tunnels they dig and encase the insects entirely. However, many species of bark beetle carry symbiotic fungal spores on their bodies which they use to inoculate the sapwood. [8] This prevents resin from flowing into the tunnels and provides food for the larvae but also hampers the flow of water and nutrients through the tree and accelerates its death. [9]

Management approaches

In response to the unprecedented spread of bark beetles in the Rocky Mountains and other parts of the western United States, the U.S. Forest Service formed the Western Bark Beetle Research Group (WBBRG) in 2007—a collaboration between scientists from three research stations that pools knowledge and resources to better understand the threat and eventually develop a strategy to combat it. [10] In 2011, the WBBRG published the Western Bark Beetle Strategy. Self-described as “a modest strategy that reflects current budget realities”, it concedes that not all affected and at-risk forest lands can be covered with the resources at the project's disposal. Instead, it mainly focuses its efforts on important areas and the general mitigation of any immediate effects on the populace. The order of priorities for the strategy are (1) human safety, (2) recovery, and (3) resilience. With up to 100,000 beetle-killed trees falling in the United States per day, a significant threat is being posed to road safety, power transmission, and water lines so the removal of dead trees near these essential amenities is of paramount importance to the project and will be completed before the other two priorities which are deemed less time-sensitive. Once public safety is ensured, recovery efforts will consist of the removal of dead trees which would fuel potential fires, cone collection for specific species, replanting trees to accelerate habitat restoration, and the treatment and prevention of noxious weeds with native species. Simultaneously, resilience will be achieved by thinning at-risk forests to reduce stress from competition and replanting forests in appropriate densities. The strategy prioritizes the restoration of affected forests over preventing the spread of bark beetles as current direct prevention techniques like pheromone baiting and pesticides are meant for small-scale scenarios and are not even close to being cost-effective at combating the extreme scale of the infestation. Though the strategy does implement some direct prevention techniques, they are rarely used and are primarily for protecting high value trees and maintaining the aesthetic appeal of important tourism sites. [11]

Despite the U.S. government's implementation of this strategy, it remains a stop-gap measure as no solution yet exists. However, scientists have been making strides towards better understanding the problem. Professor Diana Six at the University of Montana, whose work on forest entomology and pathology has received national attention, [12] has been studying tree species that survive bark beetle outbreaks and her recent findings suggest that survivorship is genetically based and can be inherited. [13] In an interview, she claims that past management strategies focus on resilience against bark beetles rather than adaptation. Instead, she proposes that the long-term sustainability of our forests relies on their adaptation to threats like bark beetles and drought, and that identifying the genetic markings that allow certain tree species to survive the current infestation may yield crucial information that can inform the development of future management approaches that support forest adaptation. [14]

See also

Related Research Articles

<i>Pinus albicaulis</i> Pine tree species found in North America

Pinus albicaulis, known by the common names whitebark pine, white bark pine, white pine, pitch pine, scrub pine, and creeping pine, is a conifer tree native to the mountains of the western United States and Canada, specifically subalpine areas of the Sierra Nevada, Cascade Range, Pacific Coast Ranges, and Rocky Mountains. It shares the common name "creeping pine" with several other plants.

<span class="mw-page-title-main">Bark beetle</span> Subfamily of beetles

A bark beetle is the common name for the subfamily of beetles Scolytinae. Previously, this was considered a distinct family (Scolytidae), but is now understood to be a specialized clade of the "true weevil" family (Curculionidae). Although the term "bark beetle" refers to the fact that many species feed in the inner bark (phloem) layer of trees, the subfamily also has many species with other lifestyles, including some that bore into wood, feed in fruit and seeds, or tunnel into herbaceous plants. Well-known species are members of the type genus Scolytus, namely the European elm bark beetle S. multistriatus and the large elm bark beetle S. scolytus, which like the American elm bark beetle Hylurgopinus rufipes, transmit Dutch elm disease fungi (Ophiostoma). The mountain pine beetle Dendroctonus ponderosae, southern pine beetle Dendroctonus frontalis, and their near relatives are major pests of conifer forests in North America. A similarly aggressive species in Europe is the spruce ips Ips typographus. A tiny bark beetle, the coffee berry borer, Hypothenemus hampei is a major pest on coffee plantations around the world.

<i>Picea engelmannii</i> Species of North American spruce tree

Picea engelmannii, with the common names Engelmann spruce, white spruce, mountain spruce, and silver spruce, is a species of spruce native to western North America. It is mostly a high-elevation mountain tree but also appears in watered canyons.

<span class="mw-page-title-main">Mountain pine beetle</span> Species of beetle

The mountain pine beetle is a species of bark beetle native to the forests of western North America from Mexico to central British Columbia. It has a hard black exoskeleton, and measures approximately 5 millimetres, about the size of a grain of rice.

Resin acid refers to mixtures of several related carboxylic acids, primarily abietic acid, found in tree resins. Nearly all resin acids have the same basic skeleton: three fused rings having the empirical formula C19H29COOH. Resin acids are tacky, yellowish gums that are water-insoluble. They are used to produce soaps for diverse applications, but their use is being displaced increasingly by synthetic acids such as 2-ethylhexanoic acid or petroleum-derived naphthenic acids.

<span class="mw-page-title-main">Disturbance (ecology)</span> Temporary change in environmental conditions that causes a pronounced change in an ecosystem

In ecology, a disturbance is a temporary change in environmental conditions that causes a pronounced change in an ecosystem. Disturbances often act quickly and with great effect, to alter the physical structure or arrangement of biotic and abiotic elements. A disturbance can also occur over a long period of time and can impact the biodiversity within an ecosystem.

<span class="mw-page-title-main">Hemlock woolly adelgid</span> Species of true bug

Adelges tsugae, the hemlock woolly adelgid or HWA, is an insect of the order Hemiptera native to East Asia. It feeds by sucking sap from hemlock and spruce trees. In its native range, HWA is not a serious pest because populations are managed by natural predators and parasitoids and by host resistance. In eastern North America it is a destructive pest that threatens the eastern hemlock and the Carolina hemlock. HWA is also found in western North America, where it has likely been present for thousands of years. In western North America, it primarily attacks western hemlock Tsuga heterophylla and has only caused minor damage due to natural predators and host resistance. Accidentally introduced to North America from Japan, HWA was first found in the eastern United States near Richmond, Virginia, in 1951. The pest is now found from northern Georgia to coastal Maine and southwestern Nova Scotia as well as areas of western Michigan near the eastern Lake Michigan shoreline. As of 2015, HWA has affected 90% of the geographic range of eastern hemlock in North America.

<span class="mw-page-title-main">Verbenone</span> Chemical compound

Verbenone is a natural organic compound classified as a terpene that is found naturally in a variety of plants. The chemical has a pleasant characteristic odor. Besides being a natural constituent of plants, it and its analogs are insect pheromones. In particular, verbenone when formulated in a long-lasting matrix has an important role in the control of bark beetles such as the mountain pine beetle and the Southern pine bark beetle.

Salvage logging is the practice of logging trees in forest areas that have been damaged by wildfire, flood, severe wind, disease, insect infestation, or other natural disturbance in order to recover economic value that would otherwise be lost.

<i>Tomicus piniperda</i> Species of beetle

Tomicus piniperda, the common pine shoot beetle, is a bark beetle native throughout Europe, northwestern Africa, and northern Asia. It is one of the most destructive shoot-feeding species in northern Europe.

The mountain pine beetle has killed large numbers of the lodgepole pine trees in the northern mountains of the US state of Colorado. The more recent outbreak of another bark beetle pest, the spruce beetle, is threatening higher-elevation forests of Engelmann spruce. Chemical prevention is effective but too costly for large-scale use. Dead trees increase the incidence of wildfires. Uses have been found for the dead wood including composting and in construction, and potentially to make biochar.

<span class="mw-page-title-main">European spruce bark beetle</span> Species of beetle

The European spruce bark beetle, is a species of beetle in the weevil subfamily Scolytinae, the bark beetles, and is found from Europe to Asia Minor and some parts of Africa.

<span class="mw-page-title-main">Deforestation in British Columbia</span>

Deforestation in British Columbia has resulted in a net loss of 1.06 million hectares of tree cover between the years 2000 and 2020. More traditional losses have been exacerbated by increased threats from climate change driven fires, increased human activity, and invasive species. The introduction of sustainable forestry efforts such as the Zero Net Deforestation Act seeks to reduce the rate of forest cover loss. In British Columbia, forests cover over 55 million hectares, which is 57.9% of British Columbia's 95 million hectares of land. The forests are mainly composed of coniferous trees, such as pines, spruces and firs.

<span class="mw-page-title-main">Beaver Creek Fire</span>

The Beaver Creek Fire was a forest fire that began on August 7, 2013 after a lightning strike in an area twelve miles northeast of Fairfield, Idaho and northwest of Hailey, Idaho in Sawtooth National Forest. The fire burned through pine trees, sagebrush, timber in the understory, grass, and various riparian areas. The fire coated the resort areas of Hailey, Ketchum, and Sun Valley, in a layer of thick soot and ash. By the time the fire was fully contained on August 31, 114,900 acres of the Ketchum Ranger District of Sawtooth National Forest has been burned. Of the 114,900 acres burned, 57,000 acres were moderately damaged and 9,500 acres were severely damaged.

<i>Ips</i> (beetle) Genus of beetles

Ips is a genus of beetles in the family Curculionidae, the true weevils. They are bark beetles, members of the subfamily Scolytinae. Species are distributed throughout the Northern Hemisphere. Some are known as introduced species in Australia and Africa. Many species are pests of forest trees, especially pines and spruces. They are known commonly as engraver beetles, ips engraver beetles, and pine engravers.

<span class="mw-page-title-main">Ponderosa pine forest</span> Plant community where Pinus ponderosa is common

Ponderosa pine forest is a plant association and plant community dominated by ponderosa pine and found in western North America. It is found from the British Columbia to Durango, Mexico. In the south and east, ponderosa pine forest is the climax forest, while in the more northern part of its range, it can transition to Douglas-fir or grand fir, or white fir forests. Understory species depends on location. Fire suppression has led to insect outbreaks in ponderosa pine forests.

<i>Dendroctonus micans</i> Species of beetle

Dendroctonus micans, the great spruce bark beetle, is a species of bark beetle native to the coniferous forests of Europe and Asia. The beetles burrow into the bark of spruce trees and lay eggs which develop into larvae that feed on the woody layers under the bark.

<i>Dendroctonus terebrans</i> Species of beetle

Dendroctonus terebrans, the black turpentine beetle, is a species of bark beetle native to the eastern United States. Its larvae tunnel under the bark of pine trees, weakening and sometimes killing the trees.

<span class="mw-page-title-main">Forest disturbance by invasive insects and diseases in the United States</span>

Species which are not native to a forest ecosystem can act as an agent of disturbance, changing forest dynamics as they invade and spread. Invasive insects and pathogens (diseases) are introduced to the United States through international trade, and spread through means of natural and human-dispersal. Invasive insects and pathogens are a serious threat to many forests in the United States and have decimated populations of several tree species, including American chestnut, American elm, eastern hemlock, whitebark pine, and the native ash species. The loss of these tree species is typically rapid with both short and long-term impacts to the forest ecosystem.

<i>Ips pini</i> Species of beetle

Ips pini, also known as the pine engraver or North American pine engraver, is a species of typical bark beetle in the family Curculionidae found primarily in North America. These beetles are subcategorized by the distinctive geographic ranges in which they are found. A key distinguishing feature of different populations is how they produce the enantiomeric composition of ipsdienol, the major pheromone produced by males of this species.

References

  1. "About the Epidemic". USDA Forest Service. Aug 9, 2012. Retrieved Mar 17, 2019.
  2. Bentz, Barbara J.; Régnière, Jacques; Fettig, Christopher J; Hansen, E. Matthew; Hayes, Jane L.; Hicke, Jeffrey A.; Kelsey, Rick G.; Negrón, Jose F.; Seybold, Steven J. (2010-09-10). "Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects". BioScience. 60 (8): 602–613. doi:10.1525/bio.2010.60.8.6. ISSN   1525-3244. S2CID   1632906.
  3. "Forest Health - Rocky Mountain National Park (U.S. National Park Service)". www.nps.gov. Retrieved 2019-03-18.
  4. de Groot, Maarten; Diaci, Jurij; Ogris, Nikica (2019-02-15). "Forest management history is an important factor in bark beetle outbreaks: Lessons for the future". Forest Ecology and Management. 433: 467–474. doi:10.1016/j.foreco.2018.11.025. ISSN   0378-1127. S2CID   91264821.
  5. Ivan, Jacob S.; Seglund, Amy E.; Truex, Richard L.; Newkirk, Eric S. (August 2018). "Mammalian responses to changed forest conditions resulting from bark beetle outbreaks in the southern Rocky Mountains". Ecosphere. 9 (8): e02369. doi: 10.1002/ecs2.2369 . ISSN   2150-8925.
  6. Bearup, Lindsay A.; Maxwell, Reed M.; Clow, David W.; McCray, John E. (2014-04-20). "Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds". Nature Climate Change. 4 (6): 481–486. Bibcode:2014NatCC...4..481B. doi:10.1038/nclimate2198. ISSN   1758-678X.
  7. Morris, Jesse L.; Cottrell, Stuart; Fettig, Christopher J.; Hansen, Winslow D.; Sherriff, Rosemary L.; Carter, Vachel A.; Clear, Jennifer L.; Clement, Jessica; DeRose, R. Justin (2017). "Managing bark beetle impacts on ecosystems and society: priority questions to motivate future research". Journal of Applied Ecology. 54 (3): 750–760. doi: 10.1111/1365-2664.12782 . ISSN   1365-2664. S2CID   88916805.
  8. Six, Diana (2003-02-26), "Bark Beetle?fungus Symbioses", Insect Symbiosis, Contemporary Topics in Entomology, vol. 20032558, CRC Press, pp. 97–114, doi:10.1201/9780203009918.ch7, ISBN   9780849312861
  9. Negrón, José F.; Fettig, Christopher J. (2014-06-01). "Mountain Pine Beetle, a Major Disturbance Agent in US Western Coniferous Forests: A Synthesis of the State of Knowledge". Forest Science. 60 (3): 409–413. doi:10.5849/forsci.13-169. ISSN   0015-749X.
  10. "Bark Beetle Research, mountain pine beetle, spruce beetle". www.usu.edu. Retrieved 2019-03-18.
  11. "Western Bark Beetle Strategy" (PDF). USDA Forest Service. 2011-07-11. Retrieved 2019-03-17.
  12. Szpaller, Keila. "UM scientist gains national attention for research on beetles". missoulian.com. Retrieved 2019-03-18.
  13. Six, Diana L.; Vergobbi, Clare; Cutter, Mitchell (2018-07-23). "Are Survivors Different? Genetic-Based Selection of Trees by Mountain Pine Beetle During a Climate Change-Driven Outbreak in a High-Elevation Pine Forest". Frontiers in Plant Science. 9: 993. doi: 10.3389/fpls.2018.00993 . ISSN   1664-462X. PMC   6064936 . PMID   30083173.
  14. "How Science Can Help to Halt The Western Bark Beetle Plague". Yale E360. Retrieved 2019-03-18.