Rodriguez well

Last updated
Cross section of Rodriguez well Rodriguez Well cross section.png
Cross section of Rodriguez well

A Rodriguez well (or Rodwell) is a type of well envisioned by Swiss glaciologist Henri Bader of Rutgers University and developed by engineer Raul Rodriguez of the United States Army for economical harvesting of drinking water in polar areas. The project began as a subproject of the Army's Camp Century base in Greenland, created as a demonstration for affordable ice-cap military outposts or bases for scientific research. [1] [2]

Contents

Background

U.S. Army engineer Raúl Rodríguez-Torrent (1921-1985) was born in Rio Piedras, Puerto Rico in August 1921. In 1940 he enlisted in the U.S. Army and later became an engineer at the United States Army Corps of Engineers (USACE). [ citation needed ]

Developed at Camp Century in Greenland during the early 1960s, a Rodriguez Well (Rodwell), uses heat exchangers and a submersible pump to create a cavity deep under a glacier’s surface and cycle the heated water up an ice shaft, siphoning a portion of the flow for consumption before sending the rest back down to the well. Camp Century was a preliminary camp for Project Iceworm whose end goal was to install a vast network of nuclear missile launch sites that could survive a first strike. If this model were found to be effective, an efficient means of supplying water to staff stationed on site needed to be developed. Project Iceworm was a top secret United States Army program of the Cold War, which aimed to build a network of mobile nuclear missile launch sites under the Greenland ice sheet. The ultimate objective of placing medium-range missiles under the ice — close enough to strike targets within the Soviet Union — was kept secret from the Government of Denmark.

Means of operation

Heated water is used to melt a shaft over a hundred feet deep, eventually forming a cavity beneath the surface at the point where the shaft ends. By continuously replenishing this pool of heated water, the deep pocket of melted water gradually expands, renewing the supply of fresh water available to be pumped to the surface. [1] The process was inspired by the observation that room temperature sewage injected into the arctic surface eventually formed a pocket around 100 feet down which would not refreeze as long as more sewage was continuously injected. [1] The lifespan of a Rodriguez well is over seven years, ending when the depth of the cavity becomes too deep for the facility to efficiently heat and recirculate water. [3]

Current uses

A Rodriguez well was driven at the National Science Foundation's Amundsen–Scott South Pole Station. [3]

Potential use on Mars

NASA is presently working with the Cold Regions Research and Engineering Laboratory of the US Army Corps of Engineers to design a proof of concept of a Rodriguez well usable in polar regions of Mars. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Glacier</span> Persistent body of ice that is moving downhill under its own weight

A glacier is a persistent body of dense ice that is constantly moving downhill under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

<span class="mw-page-title-main">Byrd Polar and Climate Research Center</span>

The Byrd Polar and Climate Research Center (BPCRC) is a polar, alpine, and climate research center at Ohio State University founded in 1960.

<span class="mw-page-title-main">Polar ice cap</span> High-latitude region of an astronomical body with major parts covered in ice

A polar ice cap or polar cap is a high-latitude region of a planet, dwarf planet, or natural satellite that is covered in ice.

<span class="mw-page-title-main">Greenland ice sheet</span> Vast body of ice in Greenland, Northern Hemisphere

The Greenland ice sheet is an ice sheet which forms the second largest body of ice in the world. It is an average of 1.67 km (1.0 mi) thick, and over 3 km (1.9 mi) thick at its maximum. It is almost 2,900 kilometres (1,800 mi) long in a north–south direction, with a maximum width of 1,100 kilometres (680 mi) at a latitude of 77°N, near its northern edge. The ice sheet covers 1,710,000 square kilometres (660,000 sq mi), around 80% of the surface of Greenland, or about 12% of the area of the Antarctic ice sheet. The term 'Greenland ice sheet' is often shortened to GIS or GrIS in scientific literature.

<span class="mw-page-title-main">Melt pond</span> Pools of open water that form on sea ice in the warmer months of spring and summer

Melt ponds are pools of open water that form on sea ice in the warmer months of spring and summer. The ponds are also found on glacial ice and ice shelves. Ponds of melted water can also develop under the ice, which may lead to the formation of thin underwater ice layers called false bottoms.

<span class="mw-page-title-main">Moulin (geomorphology)</span> Shaft within a glacier or ice sheet which water enters from the surface

A moulin is a roughly circular, vertical well-like shaft formed where a surface meltstream exploits a weakness in the ice. The term is derived from the French word for mill.

<span class="mw-page-title-main">Terra Cimmeria</span> Terra on Mars

Terra Cimmeria is a large Martian region, centered at 34.7°S 145°E and covering 5,400 km (3,400 mi) at its broadest extent. It covers latitudes 15 N to 75 S and longitudes 170 to 260 W. It lies in the Eridania quadrangle. Terra Cimmeria is one part of the heavily cratered, southern highland region of the planet. The Spirit rover landed near the area.

<span class="mw-page-title-main">Meltwater</span> Water released by the melting of snow or ice

Meltwater is water released by the melting of snow or ice, including glacial ice, tabular icebergs and ice shelves over oceans. Meltwater is often found during early spring when snow packs and frozen rivers melt with rising temperatures, and in the ablation zone of glaciers where the rate of snow cover is reducing. Meltwater can be produced during volcanic eruptions, in a similar way in which the more dangerous lahars form. It can also be produced by the heat generated by the flow itself.

<span class="mw-page-title-main">Camp Century</span> Former American military base in Greenland

Camp Century was an Arctic United States military scientific research base in Greenland. situated 240 km (150 mi) east of Pituffik Space Base. When built, Camp Century was publicized as a demonstration for affordable ice-cap military outposts and a base for scientific research.

Project Iceworm was a top secret United States Army program of the Cold War, which aimed to build a network of mobile nuclear missile launch sites under the Greenland ice sheet. The end goal was to install a vast network of nuclear missile launch sites that could survive a first strike. This was according to documents declassified in 1996. The missiles, which could strike targets within the Soviet Union, were never fielded and necessary consent from the Danish Government to do so was never broached.

<span class="mw-page-title-main">Rotten ice</span> Melting or otherwise disintegrating ice on open water

Rotten ice is a loose term for ice that is melting or structurally disintegrating due to being honeycombed by liquid water, air, or contaminants trapped between the initial growth of ice crystals. It may appear transparent or splotchy grey, and it is generally found after spring or summer thaws, presenting a danger to those traveling or spending time in outdoor recreation. The increase of rotten ice vs. solid ice in the Arctic affects ocean-atmosphere heat transfer and year-to-year ice formation, as well as the lives of the Inuit, sea mammals such as walrus and polar bear, and the microorganisms that live inside the ice.

<span class="mw-page-title-main">Cebrenia quadrangle</span> One of 30 quadrangle maps of Mars used by the US Geological Survey

The Cebrenia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is located in the northeastern portion of Mars' eastern hemisphere and covers 120° to 180° east longitude and 30° to 65° north latitude. The quadrangle uses a Lambert conformal conic projection at a nominal scale of 1:5,000,000 (1:5M). The Cebrenia quadrangle is also referred to as MC-7. It includes part of Utopia Planitia and Arcadia Planitia. The southern and northern borders of the Cebrenia quadrangle are approximately 3,065 km (1,905 mi) and 1,500 km (930 mi) wide, respectively. The north to south distance is about 2,050 km (1,270 mi). The quadrangle covers an approximate area of 4.9 million square km, or a little over 3% of Mars' surface area.

<span class="mw-page-title-main">Eridania quadrangle</span> Map of Mars

The Eridania quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Eridania quadrangle is also referred to as MC-29.

<span class="mw-page-title-main">Gorgonum Chaos</span> Chaos on Mars

Gorgonum Chaos is a set of canyons in the Phaethontis quadrangle of Mars. It is located at 37.5° south latitude and 170.9° west longitude. Its name comes from an albedo feature at 24S, 154W. Some of the first gullies on Mars were found in Gorgonum Chaos. It is generally believed that it once contained a lake. Other nearby features are Sirenum Fossae, Maadim Vallis, Ariadnes Colles, and Atlantis Chaos. Some of the surfaces in the region are formed from the Electris deposits.

<span class="mw-page-title-main">Blood Falls</span> Red-colored seep of saltwater flowing from Taylor Glacier in Antarctica

Blood Falls is an outflow of an iron(III) oxide–tainted plume of saltwater, flowing from the tongue of Taylor Glacier onto the ice-covered surface of West Lake Bonney in the Taylor Valley of the McMurdo Dry Valleys in Victoria Land, East Antarctica.

Camp Fistclench was a U.S. Army research camp on and inside the Greenland Ice Cap 200 miles (320 km) east of Thule Air Base. It was in use from 1957 to 1960. It served to test techniques used at the much larger Camp Century.

<span class="mw-page-title-main">Operation IceBridge</span> Arctic research project by NASA

Operation IceBridge (OIB) was a NASA mission to monitor changes in polar ice by utilizing airborne platforms to bridge the observational gap between the ICESat and ICESat-2 satellite missions. The program, which ran from 2009 to 2019, employed various aircraft equipped with advanced instruments to measure ice elevation, thickness, and underlying bedrock topography. The data collected helped scientists understand ice dynamics, contributing to predictive models of ice and sea-level rise. IceBridge played a crucial role in discovering the longest canyon on Earth beneath the Greenland ice sheet.

Subglacial streams are conduits of glacial meltwater that flow at the base of glaciers and ice caps. Meltwater from the glacial surface travels downward throughout the glacier, forming an englacial drainage system consisting of a network of passages that eventually reach the bedrock below, where they form subglacial streams. Subglacial streams form a system of tunnels and interlinked cavities and conduits, with water flowing under extreme pressures from the ice above; as a result, flow direction is determined by the pressure gradient from the ice and the topography of the bed rather than gravity. Subglacial streams form a dynamic system that is responsive to changing conditions, and the system can change significantly in response to seasonal variation in meltwater and temperature. Water from subglacial streams is routed towards the glacial terminus, where it exits the glacier. Discharge from subglacial streams can have a significant impact on local, and in some cases global, environmental and geological conditions. Sediments, nutrients, and organic matter contained in the meltwater can all influence downstream and marine conditions. Climate change may have a significant impact on subglacial stream systems, increasing the volume of meltwater entering subglacial drainage systems and influencing their hydrology.

Chaos terrain on Mars is distinctive; nothing on Earth compares to it. Chaos terrain generally consists of irregular groups of large blocks, some tens of kilometers across and a hundred or more meters high. The tilted and flat topped blocks form depressions hundreds of metres deep. A chaotic region can be recognized by a rat's nest of mesas, buttes, and hills, chopped through with valleys which in places look almost patterned. Some parts of this chaotic area have not collapsed completely—they are still formed into large mesas, so they may still contain water ice. Chaos regions formed long ago. By counting craters and by studying the valleys' relations with other geological features, scientists have concluded the channels formed 2.0 to 3.8 billion years ago.

<span class="mw-page-title-main">Aonia Terra</span> Region of the planet Mars

Aonia Terra is a region in the southern hemisphere of the planet Mars. It is named after a classical albedo feature Aonia, that was named after the ancient Greek region Aonia.

References

  1. 1 2 3 Clark, Elmer F. (1965). "Camp Century: Evolution of Concept and History of Design" (PDF). US Army Materiel Command. Technical Report 174: 23. Retrieved 2021-08-07.
  2. Rodriguez, Raul (1963-02-08). "Development of glacier subsurface water supplies and sewage systems" (PDF). US Army Engineer Research and Development Laboratories. Technical Report 1737_TR. Archived (PDF) from the original on August 7, 2021. Retrieved 2021-08-07.
  3. 1 2 Profaizer, Steven (2007-02-04). "Digging deep for a drink". The Antarctic Sun. United States Antarctic Program. Retrieved 2021-08-07. We create a Rod well, which is a cavity deep in the ice where we melt ice to create our own drinking water
  4. "ERDC Supports NASA's Mission to Mars". Engineer Research and Development Center Website. US Army Corps of Engineers. 2020-08-05. Archived from the original on 7 July 2022. Retrieved 2022-08-13. NASA reached out to CRREL experts and requested the laboratory's involvement in adapting their Rodriquez well simulation model to help design a Rodwell for Mars