The topic of this article may not meet Wikipedia's general notability guideline .(July 2019) |
The Roemer model of political competition is a game between political parties in which each party announces a multidimensional policy vector. Since Nash equilibria do not normally exist when the policy space is multidimensional, John Roemer introduced the concept of party-unanimity Nash equilibrium (PUNE), which can be considered an application of the concept of Nash equilibrium to political competition. It is also a generalization of the Wittman model of political competition.
In Roemer's model, all political parties are assumed to consist of three types of factions—opportunists, militants, and reformers. Opportunists seek solely to maximize the party's vote share in an election; militants seek to announce (and implement) the preferred policy of the average party member; and reformers have an objective function that is a convex combination of the objective functions of the opportunists and militants. It has been shown that the existence of reformers has no effect on what policies the party announces.
With two parties, a pair of policy announcements constitute a PUNE if and only if the reformers and militants of any given party do not unanimously agree to deviate from their announced policy, given the policy put forth by the other party. In other words, if a pair of policies constitute a PUNE, then it should not be the case that both factions of a party can be made weakly better off (and one faction strictly better off) by deviating from the policy that they put forward. Such unanimity to deviate can be rare, and thus PUNEs are more likely to exist than regular Nash equilibria.
Although there are no known cases where PUNEs do not exist, no simple necessary and sufficient conditions for the existence of non-trivial PUNEs have yet been offered. (A nontrivial PUNE is one in which no party offers the ideal policy of either its militants or opportunists.) The question of the existence of non-trivial PUNEs remains an important open question in the theory of political competition.
In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy. The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly.
In economics, general equilibrium theory attempts to explain the behavior of supply, demand, and prices in a whole economy with several or many interacting markets, by seeking to prove that the interaction of demand and supply will result in an overall general equilibrium. General equilibrium theory contrasts with the theory of partial equilibrium, which analyzes a specific part of an economy while its other factors are held constant. In general equilibrium, constant influences are considered to be noneconomic, or in other words, considered to be beyond the scope of economic analysis. The noneconomic influences may change given changes in the economic factors however, and therefore the prediction accuracy of an equilibrium model may depend on the independence of the economic factors from noneconomic ones.
The game of chicken, also known as the hawk-dove game or snowdrift game, is a model of conflict for two players in game theory. The principle of the game is that while the ideal outcome is for one player to yield, individuals try to avoid it out of pride, not wanting to look like "chickens." Each player taunts the other to increase the risk of shame in yielding. However, when one player yields, the conflict is avoided, and the game essentially ends.
In game theory, the best response is the strategy which produces the most favorable outcome for a player, taking other players' strategies as given. The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response to the other players' strategies.
A coordination game is a type of simultaneous game found in game theory. It describes the situation where a player will earn a higher payoff when they select the same course of action as another player. The game is not one of pure conflict, which results in multiple pure strategy Nash equilibria in which players choose matching strategies. Figure 1 shows a 2-player example.
In game theory, cheap talk is communication between players that does not directly affect the payoffs of the game. Providing and receiving information is free. This is in contrast to signalling, in which sending certain messages may be costly for the sender depending on the state of the world.
Bertrand competition is a model of competition used in economics, named after Joseph Louis François Bertrand (1822–1900). It describes interactions among firms (sellers) that set prices and their customers (buyers) that choose quantities at the prices set. The model was formulated in 1883 by Bertrand in a review of Antoine Augustin Cournot's book Recherches sur les Principes Mathématiques de la Théorie des Richesses (1838) in which Cournot had put forward the Cournot model. Cournot's model argued that each firm should maximise its profit by selecting a quantity level and then adjusting price level to sell that quantity. The outcome of the model equilibrium involved firms pricing above marginal cost; hence, the competitive price. In his review, Bertrand argued that each firm should instead maximise its profits by selecting a price level that undercuts its competitors' prices, when their prices exceed marginal cost. The model was not formalized by Bertrand; however, the idea was developed into a mathematical model by Francis Ysidro Edgeworth in 1889.
Game theory is the branch of mathematics in which games are studied: that is, models describing human behaviour. This is a glossary of some terms of the subject.
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.
In economics, the term sunspots refers to an extrinsic random variable, that is, a random variable that does not affect economic fundamentals. Sunspots can also refer to the related concept of extrinsic uncertainty, that is, economic uncertainty that does not come from variation in economic fundamentals. David Cass and Karl Shell coined the term sunspots as a suggestive and less technical way of saying "extrinsic random variable".
In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.
John E. Roemer is an American economist and political scientist. He is the Elizabeth S. and A. Varick Stout Professor of Political Science and Economics at Yale University. Before Yale, he was on the economics faculty at the University of California, Davis, and before entering academia Roemer worked for several years as a labor organizer. He is married to Natasha Roemer, with whom he has two daughters.
A Colonel Blotto game is a type of two-person constant-sum game in which the players (officers) are tasked to simultaneously distribute limited resources over several objects (battlefields). In the classic version of the game, the player devoting the most resources to a battlefield wins that battlefield, and the gain is equal to the total number of battlefields won.
Risk dominance and payoff dominance are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten. A Nash equilibrium is considered payoff dominant if it is Pareto superior to all other Nash equilibria in the game.1 When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since it offers to each player at least as much payoff as the other Nash equilibria. Conversely, a Nash equilibrium is considered risk dominant if it has the largest basin of attraction. This implies that the more uncertainty players have about the actions of the other player(s), the more likely they will choose the strategy corresponding to it.
In game theory, an epsilon-equilibrium, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.
Congestion games (CG) are a class of games in game theory. They represent situations which commonly occur in roads, communication networks, oligopoly markets and natural habitats. There is a set of resources ; there are several players who need resources ; each player chooses a subset of these resources ; the delay in each resource is determined by the number of players choosing a subset that contains this resource. The cost of each player is the sum of delays among all resources he chooses. Naturally, each player wants to minimize his own delay; however, each player's choices impose a negative externality on the other players, which may lead to inefficient outcomes.
A Markov perfect equilibrium is an equilibrium concept in game theory. It has been used in analyses of industrial organization, macroeconomics, and political economy. It is a refinement of the concept of subgame perfect equilibrium to extensive form games for which a pay-off relevant state space can be identified. The term appeared in publications starting about 1988 in the work of economists Jean Tirole and Eric Maskin.
Jean-François Mertens was a Belgian game theorist and mathematical economist.
In microeconomics, the Bertrand–Edgeworth model of price-setting oligopoly looks at what happens when there is a homogeneous product where there is a limit to the output of firms which are willing and able to sell at a particular price. This differs from the Bertrand competition model where it is assumed that firms are willing and able to meet all demand. The limit to output can be considered as a physical capacity constraint which is the same at all prices, or to vary with price under other assumptions.
Guoqiang Tian is a Chinese-American economist. He is the Alfred F. Chalk Professor of Economics at Texas A&M University. He is Honorary Dean of Institute for Advanced Research at Shanghai University of Finance and Economics.