Room synchronization

Last updated

The room synchronization technique is a form of concurrency control in computer science.

The room synchronization problem involves supporting a set of m mutually exclusive "rooms" where any number of users can execute code simultaneously in a shared room (any one of them), but no two users can simultaneously execute code in separate rooms.

Room synchronization can be used to implement asynchronous parallel queues and stacks with constant time access (assuming a fetch-and-add operation).

Related Research Articles

<span class="mw-page-title-main">Process (computing)</span> Particular execution of a computer program

In computing, a process is the instance of a computer program that is being executed by one or many threads. There are many different process models, some of which are light weight, but almost all processes are rooted in an operating system (OS) process which comprises the program code, assigned system resources, physical and logical access permissions, and data structures to initiate, control and coordinate execution activity. Depending on the OS, a process may be made up of multiple threads of execution that execute instructions concurrently.

<span class="mw-page-title-main">Thread (computing)</span> Smallest sequence of programmed instructions that can be managed independently by a scheduler

In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process.

In multi-threaded computer programming, a function is thread-safe when it can be invoked or accessed concurrently by multiple threads without causing unexpected behavior, race conditions, or data corruption. As in the multi-threaded context where a program executes several threads simultaneously in a shared address space and each of those threads has access to every other thread's memory, thread-safe functions need to ensure that all those threads behave properly and fulfill their design specifications without unintended interaction.

In computer science, a semaphore is a variable or abstract data type used to control access to a common resource by multiple threads and avoid critical section problems in a concurrent system such as a multitasking operating system. Semaphores are a type of synchronization primitive. A trivial semaphore is a plain variable that is changed depending on programmer-defined conditions.

In computer science, a lock or mutex is a synchronization primitive that prevents state from being modified or accessed by multiple threads of execution at once. Locks enforce mutual exclusion concurrency control policies, and with a variety of possible methods there exist multiple unique implementations for different applications.

<span class="mw-page-title-main">OpenMP</span> Open standard for parallelizing

OpenMP is an application programming interface (API) that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran, on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior.

<span class="mw-page-title-main">Race condition</span> When a systems behavior depends on timing of uncontrollable events

A race condition or race hazard is the condition of an electronics, software, or other system where the system's substantive behavior is dependent on the sequence or timing of other uncontrollable events, leading to unexpected or inconsistent results. It becomes a bug when one or more of the possible behaviors is undesirable.

In concurrent programming, concurrent accesses to shared resources can lead to unexpected or erroneous behavior. Thus, the parts of the program where the shared resource is accessed need to be protected in ways that avoid the concurrent access. One way to do so is known as a critical section or critical region. This protected section cannot be entered by more than one process or thread at a time; others are suspended until the first leaves the critical section. Typically, the critical section accesses a shared resource, such as a data structure, peripheral device, or network connection, that would not operate correctly in the context of multiple concurrent accesses.

In computing, a memory barrier, also known as a membar, memory fence or fence instruction, is a type of barrier instruction that causes a central processing unit (CPU) or compiler to enforce an ordering constraint on memory operations issued before and after the barrier instruction. This typically means that operations issued prior to the barrier are guaranteed to be performed before operations issued after the barrier.

In computing, single program, multiple data (SPMD) is a term that has been used to refer to computational models for exploiting parallelism where-by multiple processors cooperate in the execution of a program in order to obtain results faster.

Automatic parallelization, also auto parallelization, or autoparallelization refers to converting sequential code into multi-threaded and/or vectorized code in order to use multiple processors simultaneously in a shared-memory multiprocessor (SMP) machine. Fully automatic parallelization of sequential programs is a challenge because it requires complex program analysis and the best approach may depend upon parameter values that are not known at compilation time.

In computer science, synchronization is the task of coordinating multiple processes to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action.

In computer programming, a green thread is a thread that is scheduled by a runtime library or virtual machine (VM) instead of natively by the underlying operating system (OS). Green threads emulate multithreaded environments without relying on any native OS abilities, and they are managed in user space instead of kernel space, enabling them to work in environments that do not have native thread support.

Task parallelism is a form of parallelization of computer code across multiple processors in parallel computing environments. Task parallelism focuses on distributing tasks—concurrently performed by processes or threads—across different processors. In contrast to data parallelism which involves running the same task on different components of data, task parallelism is distinguished by running many different tasks at the same time on the same data. A common type of task parallelism is pipelining, which consists of moving a single set of data through a series of separate tasks where each task can execute independently of the others.

ProActive Parallel Suite is an open-source software for enterprise workload orchestration, part of the OW2 community. A workflow model allows a set of executables or scripts, written in any language, to be defined along with their dependencies, so ProActive Parallel Suite can schedule and orchestrate executions while optimising the use of computational resources.

<span class="mw-page-title-main">Parallel Extensions</span>

Parallel Extensions was the development name for a managed concurrency library developed by a collaboration between Microsoft Research and the CLR team at Microsoft. The library was released in version 4.0 of the .NET Framework. It is composed of two parts: Parallel LINQ (PLINQ) and Task Parallel Library (TPL). It also consists of a set of coordination data structures (CDS) – sets of data structures used to synchronize and co-ordinate the execution of concurrent tasks.

Loop-level parallelism is a form of parallelism in software programming that is concerned with extracting parallel tasks from loops. The opportunity for loop-level parallelism often arises in computing programs where data is stored in random access data structures. Where a sequential program will iterate over the data structure and operate on indices one at a time, a program exploiting loop-level parallelism will use multiple threads or processes which operate on some or all of the indices at the same time. Such parallelism provides a speedup to overall execution time of the program, typically in line with Amdahl's law.

DioneOS is a multitasking preemptive, real-time operating system (RTOS). The system is designed for microcontrollers, originally released on 2 February 2011 for the Texas Instruments TI MSP430x, and then on 29 March 2013 for the ARM Cortex-M3. Target microcontroller platforms have limited resources, i.e., system clock frequency of tens of MHz, and memory amounts of tens to a few hundred kilobytes (KB). The RTOS is adapted to such conditions by providing a compact and efficient image. The efficiency term here means minimizing further central processing unit (CPU) load caused by system use. According to this definition, the system is more effective when it consumes less CPU time to execute its internal parts, e.g., managing threads.

For several years parallel hardware was only available for distributed computing but recently it is becoming available for the low end computers as well. Hence it has become inevitable for software programmers to start writing parallel applications. It is quite natural for programmers to think sequentially and hence they are less acquainted with writing multi-threaded or parallel processing applications. Parallel programming requires handling various issues such as synchronization and deadlock avoidance. Programmers require added expertise for writing such applications apart from their expertise in the application domain. Hence programmers prefer to write sequential code and most of the popular programming languages support it. This allows them to concentrate more on the application. Therefore, there is a need to convert such sequential applications to parallel applications with the help of automated tools. The need is also non-trivial because large amount of legacy code written over the past few decades needs to be reused and parallelized.

In computing, a programming language consists of a syntax plus an execution model. The execution model specifies the behavior of elements of the language. By applying the execution model, one can derive the behavior of a program that was written in terms of that programming language. For example, when a programmer "reads" code, in their mind, they walk through what each line of code does. In effect they simulate the behavior inside their mind. What the programmer is doing is applying the execution model to the code, which results in the behavior of the code.

References

See also