Rotational viscosity

Last updated

Viscosity is usually described as the property of a fluid which determines the rate at which local momentum differences are equilibrated. Rotational viscosity is a property of a fluid which determines the rate at which local angular momentum differences are equilibrated. In the classical case, by the equipartition theorem, at equilibrium, if particle collisions can transfer angular momentum as well as linear momentum, then these degrees of freedom will have the same average energy. If there is a lack of equilibrium between these degrees of freedom, then the rate of equilibration will be determined by the rotational viscosity coefficient. [1] :p.304

Contents

Rotational viscosity has traditionally been thought to require rotational degrees of freedom for the fluid particles, such as in liquid crystals. In these fluids, the rotational degrees of freedom allow angular momentum to become a dynamical quantity that can be locally relaxed, leading to rotational viscosity. However, recent theoretical work [2] has predicted that rotational viscosity ought to also be present in viscous electron fluids (see Gurzhi effect) in anisotropic metals. In these cases, the ionic lattice explicitly breaks rotational symmetry and applies torques to the electron fluid, implying non-conservation of angular momentum and hence rotational viscosity.

Derivation and Use

The angular momentum density of a fluid element is written either as an antisymmetric tensor () or, equivalently, as a pseudovector. As a tensor, the equation for the conservation of angular momentum for a simple fluid with no external forces is written:

where is the fluid velocity and is the total pressure tensor (or, equivalently, the negative of the total stress tensor). Note that the Einstein summation convention is used, where summation is assumed over pairs of matched indices. The angular momentum of a fluid element can be separated into extrinsic angular momentum density due to the flow () and intrinsic angular momentum density due to the rotation of the fluid particles about their center of mass ():

where the extrinsic angular momentum density is:

and is the mass density of the fluid element. The conservation of linear momentum equation is written:

and it can be shown that this implies that:

Subtracting this from the equation for the conservation of angular momentum yields:

Any situation in which this last term is zero will result in the total pressure tensor being symmetric, and the conservation of angular momentum equation will be redundant with the conservation of linear momentum. If, however, the internal rotational degrees of freedom of the particles are coupled to the flow (via the velocity term in the above equation), then the total pressure tensor will not be symmetric, with its antisymmetric component describing the rate of angular momentum exchange between the flow and the particle rotation.

In the linear approximation for this transport of angular momentum, the rate of flow is written: [1] :p.308

where is the average angular velocity of the rotating particles (as an antisymmetric tensor rather than a pseudovector) and is the rotational viscosity coefficient.

Related Research Articles

<span class="mw-page-title-main">Angular momentum</span> Conserved physical quantity; rotational analogue of linear momentum

In physics, angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes).

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:

<span class="mw-page-title-main">Euler equations (fluid dynamics)</span> Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow

In fluid dynamics, the Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.

<span class="mw-page-title-main">Boltzmann equation</span> Equation of statistical mechanics

The Boltzmann equation or Boltzmann transport equation (BTE) describes the statistical behaviour of a thermodynamic system not in a state of equilibrium, devised by Ludwig Boltzmann in 1872. The classic example of such a system is a fluid with temperature gradients in space causing heat to flow from hotter regions to colder ones, by the random but biased transport of the particles making up that fluid. In the modern literature the term Boltzmann equation is often used in a more general sense, referring to any kinetic equation that describes the change of a macroscopic quantity in a thermodynamic system, such as energy, charge or particle number.

<span class="mw-page-title-main">Large eddy simulation</span>

Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is currently applied in a wide variety of engineering applications, including combustion, acoustics, and simulations of the atmospheric boundary layer.

<span class="mw-page-title-main">Smoothed-particle hydrodynamics</span> Method of hydrodynamics simulation

Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.

In fluid dynamics, the Reynolds stress is the component of the total stress tensor in a fluid obtained from the averaging operation over the Navier–Stokes equations to account for turbulent fluctuations in fluid momentum.

Aeroacoustics is a branch of acoustics that studies noise generation via either turbulent fluid motion or aerodynamic forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of this phenomenon is the Aeolian tones produced by wind blowing over fixed objects.

In mathematics, mathematical physics, and theoretical physics, the spin tensor is a quantity used to describe the rotational motion of particles in spacetime. The tensor has application in general relativity and special relativity, as well as quantum mechanics, relativistic quantum mechanics, and quantum field theory.

The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.

<span class="mw-page-title-main">Rotational diffusion</span>

Rotational diffusion is the rotational movement which acts upon any object such as particles, molecules, atoms when present in a fluid, by random changes in their orientations. Whilst the directions and intensities of these changes are statistically random, they do not arise randomly and are instead the result of interactions between particles. One example occurs in colloids, where relatively large insoluble particles are suspended in a greater amount of fluid. The changes in orientation occur from collisions between the particle and the many molecules forming the fluid surrounding the particle, which each transfer kinetic energy to the particle, and as such can be considered random due to the varied speeds and amounts of fluid molecules incident on each individual particle at any given time.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

The viscous stress tensor is a tensor used in continuum mechanics to model the part of the stress at a point within some material that can be attributed to the strain rate, the rate at which it is deforming around that point.

<span class="mw-page-title-main">Relativistic angular momentum</span> Angular momentum in special and general relativity

In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems.

In astrophysics, the Chandrasekhar virial equations are a hierarchy of moment equations of the Euler equations, developed by the Indian American astrophysicist Subrahmanyan Chandrasekhar, and the physicist Enrico Fermi and Norman R. Lebovitz.

References

  1. 1 2 de Groot, S.R.; Mazur, P. (1984). Non-Equilibrium Thermodynamics. New York: Dover Publications Inc. p. 304. ISBN   0-486-64741-2.
  2. Cook, Caleb Q.; Lucas, Andrew (2019-06-25). "Electron hydrodynamics with a polygonal Fermi surface". Physical Review B. 99 (23). arXiv: 1903.05652 . doi:10.1103/PhysRevB.99.235148. S2CID   119427641.

Category