A running total or rolling total is the summation of a sequence of numbers which is updated each time a new number is added to the sequence, by adding the value of the new number to the previous running total. Another term for it is partial sum.
The purposes of a running total are twofold. First, it allows the total to be stated at any point in time without having to sum the entire sequence each time. Second, it can save having to record the sequence itself, if the particular numbers are not individually important.
Consider the sequence < 5 8 3 2 >. What is the total of this sequence?
Answer: 5 + 8 + 3 + 2 = 18. This is arrived at by simple summation of the sequence.
Now we insert the number 6 at the end of the sequence to get < 5 8 3 2 6 >. What is the total of that sequence?
Answer: 5 + 8 + 3 + 2 + 6 = 24. This is arrived at by simple summation of the sequence. But if we regarded 18 as the running total, we need only add 6 to 18 to get 24. So, 18 was, and 24 now is, the running total. In fact, we would not even need to know the sequence at all, but simply add 6 to 18 to get the new running total; as each new number is added, we get a new running total.
The same method will also work with subtraction, but in that case it is not strictly speaking a total (which implies summation) but a running difference; not to be confused with a delta. This is used, for example, when scoring the game of darts. Similarly one can multiply instead of add to get the running product.
While this concept is very simple, it is extremely common in everyday use. For example, most cash registers display a running total of the purchases so far rung in. By the end of the transaction this will, of course, be the total of all the goods. Similarly, the machine may keep a running total of all transactions made, so that at any point in time the total can be checked against the amount in the till, even though the machine has no memory of past transactions.
Typically many games of all kinds use running totals for scoring; the actual values of past events in the sequence are not important, only the current score, that is to say, the running total.
The central processing unit of computers for many years had a component called the accumulator which, essentially, kept a running total (it "accumulated" the results of individual calculations). This term is largely obsolete with more modern computers. A betting accumulator is the running product of the outcomes of several bets in sequence.
In a computer's central processing unit (CPU), the accumulator is a register in which intermediate arithmetic logic unit results are stored.
In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.
Roulette is a casino game named after the French word meaning little wheel which was likely developed from the Italian game Biribi. In the game, a player may choose to place a bet on a single number, various groupings of numbers, the color red or black, whether the number is odd or even, or if the numbers are high (19–36) or low (1–18).
A multiplication algorithm is an algorithm to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Efficient multiplication algorithms have existed since the advent of the decimal system.
Addition is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or sum of those values combined. The example in the adjacent image shows a combination of three apples and two apples, making a total of five apples. This observation is equivalent to the mathematical expression "3 + 2 = 5".
Napier's bones is a manually-operated calculating device created by John Napier of Merchiston, Scotland for the calculation of products and quotients of numbers. The method was based on lattice multiplication, and also called rabdology, a word invented by Napier. Napier published his version in 1617. It was printed in Edinburgh and dedicated to his patron Alexander Seton.
In numerical analysis, the Kahan summation algorithm, also known as compensated summation, significantly reduces the numerical error in the total obtained by adding a sequence of finite-precision floating-point numbers, compared to the obvious approach. This is done by keeping a separate running compensation, in effect extending the precision of the sum by the precision of the compensation variable.
A power of two is a number of the form 2n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent.
The Fletcher checksum is an algorithm for computing a position-dependent checksum devised by John G. Fletcher (1934–2012) at Lawrence Livermore Labs in the late 1970s. The objective of the Fletcher checksum was to provide error-detection properties approaching those of a cyclic redundancy check but with the lower computational effort associated with summation techniques.
A divisibility rule is a shorthand and useful way of determining whether a given integer is divisible by a fixed divisor without performing the division, usually by examining its digits. Although there are divisibility tests for numbers in any radix, or base, and they are all different, this article presents rules and examples only for decimal, or base 10, numbers. Martin Gardner explained and popularized these rules in his September 1962 "Mathematical Games" column in Scientific American.
A spigot algorithm is an algorithm for computing the value of a transcendental number that generates the digits of the number sequentially from left to right providing increasing precision as the algorithm proceeds. Spigot algorithms also aim to minimize the amount of intermediate storage required. The name comes from the sense of the word "spigot" for a tap or valve controlling the flow of a liquid. Spigot algorithms can be contrasted with algorithms that store and process complete numbers to produce successively more accurate approximations to the desired transcendental.
In computer engineering, an orthogonal instruction set is an instruction set architecture where all instruction types can use all addressing modes. It is "orthogonal" in the sense that the instruction type and the addressing mode vary independently. An orthogonal instruction set does not impose a limitation that requires a certain instruction to use a specific register so there is little overlapping of instruction functionality.
Delta-sigma modulation is a method for encoding analog signals into digital signals as found in an analog-to-digital converter (ADC). It is also used to convert high-bit-count, low-frequency digital signals into lower-bit-count, higher-frequency digital signals as part of the process to convert digital signals into analog as part of a digital-to-analog converter (DAC).
A carry-save adder is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two numbers, and the answer of the original summation can be achieved by adding these outputs together. A carry save adder is typically used in a binary multiplier, since a binary multiplier involves addition of more than two binary numbers after multiplication. A big adder implemented using this technique will usually be much faster than conventional addition of those numbers.
A binary multiplier is an electronic circuit used in digital electronics, such as a computer, to multiply two binary numbers.
Tacit programming, also called point-free style, is a programming paradigm in which function definitions do not identify the arguments on which they operate. Instead the definitions merely compose other functions, among which are combinators that manipulate the arguments. Tacit programming is of theoretical interest, because the strict use of composition results in programs that are well adapted for equational reasoning. It is also the natural style of certain programming languages, including APL and its derivatives, and concatenative languages such as Forth. The lack of argument naming gives point-free style a reputation of being unnecessarily obscure, hence the epithet "pointless style".
In computer science, the prefix sum, cumulative sum, inclusive scan, or simply scan of a sequence of numbers x0, x1, x2, ... is a second sequence of numbers y0, y1, y2, ..., the sums of prefixes of the input sequence:
The Little Man Computer (LMC) is an instructional model of a computer, created by Dr. Stuart Madnick in 1965. The LMC is generally used to teach students, because it models a simple von Neumann architecture computer—which has all of the basic features of a modern computer. It can be programmed in machine code or assembly code.
The infinite series whose terms are the natural numbers 1 + 2 + 3 + 4 + ⋯ is a divergent series. The nth partial sum of the series is the triangular number
Project Euler is a website dedicated to a series of computational problems intended to be solved with computer programs. The project attracts graduates and students interested in mathematics and computer programming. Since its creation in 2001 by Colin Hughes, Project Euler has gained notability and popularity worldwide. It includes 800 problems as of 30 May 2022, with a new one added approximately every week. Problems are of varying difficulty, but each is solvable in less than a minute of CPU time using an efficient algorithm on a modestly powered computer. As of 27 April 2021, Project Euler has more than 1,000,000 users who have solved at least one problem, in over 100 different programming languages.