S-PULSE

Last updated

S-PULSE is the acronym of Shrink-Path of Ultra-Low Power Superconducting Electronics. S-PULSE is a support action of the European Seventh Framework Programme (FP7) that stimulates joint efforts of European academic and industrial groups in the field of superconducting technologies. The general goal is to prepare Superconductor Electronics (SE) technologies for the technology generation beyond the CMOS scaling limits (called often “beyond CMOS”). S-PULSE supports the Superconducting Electronics community to strengthen the vital link between research and development and industry. It also strengthens the exchange of knowledge and ideas and take charge of education.

CMOS technology for constructing integrated circuits

Complementary metal–oxide–semiconductor (CMOS) is a technology for constructing integrated circuits. CMOS technology is used in microprocessors, microcontrollers, static RAM, and other digital logic circuits. CMOS technology is also used for several analog circuits such as image sensors, data converters, and highly integrated transceivers for many types of communication. Frank Wanlass patented CMOS in 1963 while working for Fairchild Semiconductor.

The challenge in SE is to achieve superconducting electronic circuit performance beyond the possibilities of semiconductor circuit technologies, and to make SE technologies ready to benefit to other technologies in the world markets. This support action, developed in the 2008-2010 period, is focused to prepare a Technology Roadmap and a Strategic Research Agenda (SRA) to enable the transition from the present scientific oriented network for SE towards an industrially guided European Technology Platform (ETP).

Related Research Articles

Integrated circuit electronic circuit manufactured by lithography; set of electronic circuits on one small flat piece (or "chip") of semiconductor material, normally silicon

An integrated circuit or monolithic integrated circuit is a set of electronic circuits on one small flat piece of semiconductor material that is normally silicon. The integration of large numbers of tiny transistors into a small chip results in circuits that are orders of magnitude smaller, cheaper, and faster than those constructed of discrete electronic components. The IC's mass production capability, reliability and building-block approach to circuit design has ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized the world of electronics. Computers, mobile phones, and other digital home appliances are now inextricable parts of the structure of modern societies, made possible by the small size and low cost of ICs.

7400-series integrated circuits series of transistor–transistor logic integrated circuits

The 7400 series of transistor–transistor logic (TTL) integrated circuits are the most popular family of TTL integrated circuit logic. Quickly replacing diode–transistor logic, it was used to build the mini and mainframe computers of the 1960s and 1970s. Several generations of pin-compatible descendants of the original family have since become de facto standard electronic components.

555 timer IC

The 555 timer IC is an integrated circuit (chip) used in a variety of timer, pulse generation, and oscillator applications. The 555 can be used to provide time delays, as an oscillator, and as a flip-flop element. Derivatives provide two (556) or four (558) timing circuits in one package.

In electronics, rapid single flux quantum (RSFQ) is a digital electronic device that uses superconducting devices, namely Josephson junctions, to process digital signals. In RSFQ logic, information is stored in the form of magnetic flux quanta and transferred in the form of Single Flux Quantum (SFQ) voltage pulses. RSFQ is one family of superconducting or SFQ logic. Others include Reciprocal Quantum Logic (RQL), ERSFQ - energy-efficient RSFQ version that does not use bias resistors, etc. Josephson junctions are the active elements for RSFQ electronics, just as transistors are the active elements for semiconductor electronics. RSFQ is a classical digital, not quantum computing, technology.

Education and training of electrical and electronics engineers

Both electrical and electronics engineers typically possess an academic degree with a major in electrical/ electronics engineering. The length of study for such a degree is usually three or four years and the completed degree may be designated as a Bachelor of Engineering, Bachelor of Science or Bachelor of Applied Science depending upon the university.

Soitec is a France-based international industrial company specialized in generating and manufacturing high performance semiconductor materials.

Active pixel sensor an image sensor consisting of an integrated circuit

An active-pixel sensor (APS) is an image sensor where each picture element ("pixel") has a photodetector and an active amplifier. There are many types of integrated circuit active pixel sensors including the complementary metal–oxide–semiconductor (CMOS) APS used most commonly in cell phone cameras, web cameras, most digital pocket cameras since 2010, in most digital single-lens reflex cameras (DSLRs) and Mirrorless interchangeable-lens cameras (MILCs). Such an image sensor is produced using CMOS technology, and has emerged as an alternative to charge-coupled device (CCD) image sensors.

Flux qubit

In quantum computing, and more specifically in superconducting quantum computing, flux qubits are micrometer sized loops of superconducting metal interrupted by a number of Josephson junctions, functioning as quantum bits. The junction parameters are engineered during fabrication so that a persistent current will flow continuously when an external magnetic flux is applied. As only an integer number of flux quanta are allowed to penetrate the superconducting ring, clockwise or counter-clockwise currents are developed in the loop to compensate a non-integer external flux bias. When the applied flux through the loop area is close to a half integer number of flux quanta, the two lowest energy eigenstates of the loop will be a quantum superposition of the clockwise and counter-clockwise currents. The two lowest energy eigenstates differ only by the relative quantum phase between the composing current-direction states. Higher energy eigenstates correspond to much larger persistent currents, that induce an additional flux quantum to the qubit loop, thus are well separated energetically from the lowest two eigenstates. This separation, known as the "qubit non linearity" criteria, allows operations with the two lowest eigenstates only, effectively creating a two level system. Usually, the two lowest eigenstates will serve as the computational basis for the logical qubit.

Integrated Micro-Electronics, Inc.

Integrated Micro-electronics, Inc. provides electronics manufacturing services (EMS) and power semiconductor assembly and test services (SATS) with manufacturing facilities in Asia, Europe, and North America. Its headquarters is located in Biñan, Laguna, Philippines.

Harry Kroger is an American physicist and electrical engineer. He used to be a Bartle professor of electrical engineering at Binghamton University, a part of the State University of New York (SUNY) system. He has been a member of the Institute of Electrical and Electronics Engineers (IEEE) since 1964 and became a Life Fellow of the IEEE in 2001. He has now retired to Florida.

Electronic engineering electrical engineering discipline which utilizes nonlinear and active electrical components to design electronic circuits, devices, and their systems

Electronic engineering is an electrical engineering discipline which utilizes nonlinear and active electrical components to design electronic circuits, devices, VLSI devices and their systems. The discipline typically also designs passive electrical components, usually based on printed circuit boards.

CEA-Leti, a Grenoble, France-based research institute for electronics and information technologies, is one of the world’s largest organizations for applied research in microelectronics and nanotechnology.

Magnetomyography

Magnetomyography (MMG) is a technique for mapping muscle activity by recording magnetic fields produced by electrical currents occurring naturally in the muscles, using arrays of SQUIDs. It has a better capability than electromyography for detecting slow or direct currents. The magnitude of the MMG signal is in the scale of pico (10−12) to femto (10−15) Tesla (T). Miniaturizing MMG offers a prospect to modernize the bulky SQUID to wearable miniaturized magnetic sensors.

Superconducting nanowire single-photon detector

The superconducting nanowire single-photon detector (SNSPD) is a type of near-infrared and optical single-photon detector based on a current-biased superconducting nanowire. It was first developed by scientists at Moscow State Pedagogical University and at the University of Rochester in 2001.

Adrian (Mihai) Ionescu is a full Professor at the Swiss Federal Institute of Technology in Lausanne (EPFL).
He received the B.S./M.S. and Ph.D. degrees from the Polytechnic Institute of Bucharest, Romania and the National Polytechnic Institute of Grenoble, France, in 1989 and 1997, respectively. He has held staff and/or visiting positions at LETI-CEA, Grenoble, France, LPCS-ENSERG, Grenoble, France and Stanford University, USA, in 1998 and 1999. He was a visiting professor with Tokyo Institute of Technology in 2012 and 2016.

The Symposia on VLSI Technology and Circuits are two closely connected international conferences on semiconductor technology and circuits, thereby offering an opportunity to interact and synergize on topics of joint interest, spanning the range from process technology to systems-on-chip. The Symposia take place once a year around the middle of June at locations alternating between Kyoto, Japan and Honolulu, USA. They bring together managers, engineers, and scientists from industry and academia around the world to discuss challenges in manufacturing and design of Very-large-scale integration (VLSI) circuits. The Symposium on VLSI Technology started in 1981 while the Symposium on VLSI Circuits was established in 1987. Beside regular presentations of technical papers, the Symposia comprise short courses, panel sessions, and invited talks conducted by experts in the field from both Industry and Academia.

The IEEE International Electron Devices Meeting (IEDM) is an annual micro- and nanoelectronics conference held each December that serves as a forum for reporting technological breakthroughs in the areas of semiconductor and related device technologies, design, manufacturing, physics, modeling and circuit-device interaction.

Superconducting logic refers to a class of logic circuits or logic gates that use the unique properties of superconductors, including zero-resistance wires, ultrafast Josephson junction switches, and quantization of magnetic flux (fluxoid). Superconducting computing is a form of cryogenic computing, as superconductive electronic circuits require cooling to cryogenic temperatures for operation, typically below 10 kelvin. Often superconducting computing is applied to quantum computing, with an important application known as superconducting quantum computing.

Beyond CMOS

Beyond CMOS refers to the possible future digital logic technologies beyond the CMOS scaling limits which limits device density and speeds due to heating effects.

The International Roadmap for Devices and Systems, or IRDS, is a set of predictions about likely developments in electronic devices and systems. The IRDS was established in 2016 and is the successor to the International Technology Roadmap for Semiconductors. These predictions are intended to allow coordination of efforts across academia, manufacturers, equipment suppliers, and national research laboratories. The IEEE specifies the goals of the roadmap as:

References